
OpenAz: XACML PEPs for
Attribute-based Access

Control

Rich Levinson
Hal Lockhart

Prateek Mishra
Oracle Corporation, July 2010

Glossary
  ABAC: A policy-based access control solution

that uses attributes assigned to subjects,
resources or the environment to enable access to
resources and controlled information sharing
[NIST2010]

  Policy Engine: rules-based engine that
implements a policy decision point
  Many commercial policy engines available
  Specialized policy engines include domain

knowledge
  Some policy engines accept or generate rules

using the XACML policy language

Externalized Attribute-based
Access Control

Application

Middleware

Service

PEP

PEP

PEP

Policy Engine
 PDP

Rules

Groups and Roles
(manager, customer,…)
user attributes
(zip code, citizenship,..)
resource attributes
(creator, classification,.)
environment attributes
(authN strength, …)

PAP

Gateway PEP

PEP - Policy Enforcement Point
PAP – Policy Administration Point
PDP – Policy Decision Point

What is a XACML PEP?

  Interacts with PDP using XACML authorization
request and response model
  XACML provides XML definition of request/response

  XACML SAML profile is a concrete protocol instance
  Opportunity for other language and protocol bindings

  Authorization Request is a set of attributes – name
and value pairs
  Subject, Environment, Resource, Action
  Attributes can be added by multiple entities

  Application, container, proxy, middleware, policy engine,
….

Authorization Response

  Supports feedback from policy engine to PEP
  Obligation – additional conditions that must

be enforced by the PEP before access is
allowed
  Logging, privacy, user-interaction

  Missing attributes
  PEP can discover required attributes dynamically
  Policy changes may result in new attributes being

required

OpenAz Goals
  Provide consistent model for applications and

middleware to invoke access control
  XACML PEP can be embedded in a variety of contexts
  Support for finding attributes on an as-needed basis
  Encourage creation of other language/framework bindings

  Reference implementation for Java AzApi interface
  Java binding for XACML request-response protocol

  Explain how XACML Java AzApi interface can be
mated with third-party policy engines
  Existing policy engines can implement this interface
  Support efficient processing as providers can implement

caching and other proprietary magic
  Details of local vs. remote processing hidden by the interface

Available OpenAz Components

  Definition of Java AzApi Interface
  Includes Java Construct layer
  Submitted to XACML TC for standardization

  Joint work with Cisco and others (RSA)

  Implementation of AzApi with SUN XACML
library
  Available for use today

  XACML Policy-creation Tool
  Simplifies creation of XACML policy

Java AzApi: XACML Abstraction Layer

  A set of interfaces that enables a Java
module to supply and consume all the
required info for submitting a XACML request
and for receiving a XACML response,
respectively.

  The main API is:
 AzResponseContext azRsp =

AzService.decide(AzRequestContext azReq);

Java AzApi: objects

  AzService: main impl from an AzApi provider; OpenAz provides
ref:
(org.openliberty.openaz.pdp.provider.SimpleConcreteSunXacmlService)

  AzRequestContext, AzResponseContext: provided by
OpenAz, optionally may be implemented by provider
AzEntity<AzCategoryId, Enum<T>>: a collection of AzAttributes
in a specific AzCategoryId (Subject, Resource, Action, …)

  AzAttribute<AzCategoryId, Enum<T>>: a collection of XACML
Attribute metadata associated with a specific AttributeId

  AzAttributeValue<AzDataTypeId,Enum<U>,V>: a XACML
DataType and corresponding Java value, V, that is used to
populate the DataType

Additional AzApi Features
(beyond single XACML req/rsp)

  Multiple request/response: a Set of
AzResourceActionAssociations may be submitted with
an AzEntity<Subject> and AzEntity<Environment> and
a corresponding Set of AzResults is returned within the
AzRequestContext and AzResponseContext,
respectively.

  AzService.query(String scope,
AzRequestContext azReq): a Set of AzResults is
returned based on a resource-specific formatted scope
(ex. scope = “EngServer”, will return list of eng servers
user has access to)

Additional AzApi Features (cont.)
  Collection<AzAttribute<T>>

 AzAttributeFinder.findAttribute(
 AzRequestContext azReqCtx,
 AzEntity<T> azEntity,
 AzAttribute<T> azAttr):

  Applications or middleware may register one or more
AzAttributeFinder objects with AzService that may be called
during a “decide()” to obtain additional attributes needed to make
a decision.
The provider supplies the request context, the entity for which an
attribute is requested, and an AzAttribute containing the attribute
metadata.

Java AzApi: Java Construct layer

  Responds to concern that AzApi requires
some knowledge of XACML specifics
  Data types, Attribute categories and names

  Java packages or frameworks may request
authorization decisions using native objects
  E.g., Decide (user object, resource object, action

object)
  Mapping of these native representations into

lower-level AzApi forms is modeled separately

Java AzApi: Java construct layer

  PepRequest pepReq =
 pepRequestFactory.newPepRequest(
 obj, obj, obj, obj):

create a XACML request using any type of Java Objects
containing subject, resource, action, and environment attributes
respectively
(ex Subject(JAAS),”read”,”C:/file.html”,Date)

  PepResponse pepRsp = pepReq.decide();
return a full PepResponse based on pepReq, containing boolean
AzDecision and Map<String,String> of Obligations

  Mappers: custom modules used to map specific Java objects
to their AzApi AzAttribute counterparts.

Download information
  Complete project (AzApi interface, reference

implementation, Policy Tool,Javadoc)
  http://openaz.svn.sourceforge.net/viewvc/openaz/

(download the GNU tarball)
  Javadoc only

  http://openaz.svn.sourceforge.net/viewvc/openaz/azapi/doc/

  Apache 2.0 license
  Join the project !

  http://www.openliberty.org/wiki/index.php/Main_Page#OpenAz
  Mailing list and bi-weekly conference call

