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Glossary 
  ABAC: A policy-based access control solution 

that uses attributes assigned to subjects, 
resources or the environment to enable access to 
resources and controlled information sharing 
[NIST2010] 

  Policy Engine: rules-based engine that 
implements a policy decision point  
  Many commercial policy engines available 
  Specialized policy engines include domain 

knowledge 
  Some policy engines accept or generate rules 

using the XACML policy language 
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What is a XACML PEP? 

  Interacts with PDP using XACML authorization 
request and response model  
  XACML provides XML definition of request/response 

  XACML SAML profile is a concrete protocol instance 
  Opportunity for other language and protocol bindings 

  Authorization Request is a set of attributes – name 
and value pairs 
  Subject, Environment, Resource, Action 
  Attributes can be added by multiple entities 

  Application, container, proxy, middleware, policy engine,
…. 



Authorization Response 

  Supports feedback from policy engine to PEP 
  Obligation – additional conditions that must 

be enforced by the PEP before access is 
allowed 
  Logging, privacy, user-interaction 

  Missing attributes  
  PEP can discover required attributes dynamically 
  Policy changes may result in new attributes being 

required 



OpenAz Goals 
  Provide consistent model for applications and 

middleware to invoke access control  
  XACML PEP can be embedded in a variety of contexts 
  Support for finding attributes on an as-needed basis 
  Encourage creation of other language/framework bindings 

  Reference implementation for Java AzApi interface 
  Java binding for XACML request-response protocol 

  Explain how XACML Java AzApi interface can be 
mated with third-party policy engines 
  Existing policy engines can implement this interface 
  Support efficient processing as providers can implement 

caching and other proprietary magic 
  Details of local vs. remote processing hidden by the interface 



Available OpenAz Components 

  Definition of Java AzApi Interface 
  Includes Java Construct layer 
  Submitted to XACML TC for standardization 

  Joint work with Cisco and others (RSA) 

  Implementation of AzApi with SUN XACML 
library 
  Available for use today 

  XACML Policy-creation Tool 
  Simplifies creation of XACML policy 



Java AzApi: XACML Abstraction Layer 

  A set of interfaces that enables a Java 
module to supply and consume all the 
required info for submitting a XACML request 
and for receiving a XACML response, 
respectively. 

  The main API is: 
 AzResponseContext azRsp =  

AzService.decide(AzRequestContext azReq); 



Java AzApi: objects 

  AzService: main impl from an AzApi provider; OpenAz provides 
ref: 
(org.openliberty.openaz.pdp.provider.SimpleConcreteSunXacmlService) 

  AzRequestContext, AzResponseContext: provided by 
OpenAz, optionally may be implemented by provider 
AzEntity<AzCategoryId, Enum<T>>: a collection of AzAttributes 
in a specific AzCategoryId (Subject, Resource, Action, …)  

  AzAttribute<AzCategoryId, Enum<T>>: a collection of XACML 
Attribute metadata associated with a specific AttributeId 

  AzAttributeValue<AzDataTypeId,Enum<U>,V>: a XACML 
DataType and corresponding Java value, V, that is used to 
populate the DataType 



Additional AzApi Features 
(beyond single XACML req/rsp) 

  Multiple request/response: a Set of 
AzResourceActionAssociations may be submitted with 
an AzEntity<Subject> and AzEntity<Environment> and 
a corresponding Set of AzResults is returned within the 
AzRequestContext and AzResponseContext, 
respectively. 

  AzService.query(String scope, 
AzRequestContext azReq): a Set of AzResults is 
returned based on a resource-specific formatted scope 
(ex. scope = “EngServer”, will return list of eng servers 
user has access to) 



Additional AzApi Features (cont.) 
  Collection<AzAttribute<T>>  

 AzAttributeFinder.findAttribute( 
  AzRequestContext azReqCtx, 
  AzEntity<T> azEntity, 
  AzAttribute<T> azAttr): 

  Applications or middleware may register one or more 
AzAttributeFinder objects with AzService that may be called 
during a “decide()” to obtain additional attributes needed to make 
a decision.  
The provider supplies the request context, the entity for which an 
attribute is requested, and an AzAttribute containing the attribute 
metadata. 

    



Java AzApi: Java Construct layer 

  Responds to concern that AzApi requires 
some knowledge of XACML specifics 
  Data types, Attribute categories and names 

  Java packages or frameworks may request 
authorization decisions using native objects 
  E.g., Decide (user object, resource object, action 

object) 
  Mapping of these native representations into 

lower-level AzApi forms is modeled separately 



Java AzApi: Java construct layer 

  PepRequest pepReq = 
 pepRequestFactory.newPepRequest( 
  obj, obj, obj, obj): 

create a XACML request using any type of Java Objects 
containing subject, resource, action, and environment attributes 
respectively  
(ex Subject(JAAS),”read”,”C:/file.html”,Date) 

  PepResponse pepRsp = pepReq.decide(); 
return a full PepResponse based on pepReq, containing boolean 
AzDecision and Map<String,String> of Obligations 

  Mappers: custom modules used to map specific Java objects 
to their AzApi AzAttribute counterparts. 



Download information 
  Complete project (AzApi interface, reference 

implementation, Policy Tool,Javadoc) 
  http://openaz.svn.sourceforge.net/viewvc/openaz/  

(download the GNU tarball) 
  Javadoc only 

  http://openaz.svn.sourceforge.net/viewvc/openaz/azapi/doc/  

  Apache 2.0 license 
  Join the project ! 

  http://www.openliberty.org/wiki/index.php/Main_Page#OpenAz 
  Mailing list and bi-weekly conference call 




