
10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 1/26

User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization
Version: 2.0

Date: 2018-1-7

Editor: Eve Maler, ForgeRock

Authors: Maciej Machulak, HSBC

Justin Richer, Bespoke Engineering

Abstract

This specification defines a means for a client, representing a requesting party, to use a permission ticket to request an
OAuth 2.0 access token to gain access to a protected resource asynchronously from the time a resource owner authorizes
access.

Status of This Document

This technical specification is a Recommendation produced by the User-Managed Access Work Group and approved by the
Membership of the Kantara Initiative according to its Operating Procedures.

Copyright Notice

Copyright © 2018 Kantara Initiative and the persons identified as the document authors. All rights reserved.

This document is subject to the Kantara IPR Policy - Option Patent & Copyright: Reciprocal Royalty Free with Opt-Out to
Reasonable And Non discriminatory (RAND) (HTML version).

https://kantarainitiative.org/confluence/display/uma/Home
http://kantarainitiative.org/confluence/download/attachments/84279306/Kantara%20Operating%20Procedures%20V2.0.pdf
https://kantarainitiative.org/wp-content/uploads/2014/08/KantaraInitiativeIPRPolicies_V2.0.pdf
https://kantarainitiative.org/confluence/pages/viewpage.action?pageId=41025689

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 2/26

Table of Contents

1. Introduction
1.1 Notational Conventions
1.2 Roles
1.3 Abstract Flow

1.3.1 Authorization Process
2. Authorization Server Metadata
3. Flow Details

3.1 Client Requests Resource Without Providing an Access Token
3.2 Resource Server Responds to Client's Tokenless Access Attempt

3.2.1 Resource Server Response to Client on Permission Request Success
3.2.2 Resource Server Response to Client on Permission Request Failure

3.3 Client Seeks RPT on Requesting Party's Behalf
3.3.1 Client Request to Authorization Server for RPT
3.3.2 Client Redirect of Requesting Party to Authorization Server for Interactive Claims-Gathering
3.3.3 Authorization Server Redirect of Requesting Party Back to Client After Interactive Claims-Gathering
3.3.4 Authorization Assessment and Results Determination
3.3.5 Authorization Server Response to Client on Authorization Success
3.3.6 Authorization Server Response to Client on Authorization Failure

3.4 Client Requests Resource and Provides an RPT
3.5 Resource Server Responds to Client's RPT-Accompanied Resource Request
3.6 Authorization Server Refreshes RPT
3.7 Client Requests Token Revocation

4. Profiles and Extensions
5. Security Considerations

5.1 Cross-Site Request Forgery
5.2 RPT and PCT Exposure
5.3 Strengthening RPT Protection Using Proof of Possession
5.4 Credentials-Guessing
5.5 Permission Ticket Management
5.6 Naive Implementations of Default-Deny Authorization
5.7 Requirements for Pre-Established Trust Regarding Claim Tokens
5.8 Profiles and Trust Establishment

6. Privacy Considerations
6.1 Policy Condition Setting, Time-to-Live Management, and Removal of Authorization Grants
6.2 Requesting Party Information at the Authorization Server
6.3 Resource Owner Information at the Resource Server
6.4 Profiles and Trust Establishment

7. IANA Considerations
7.1 Well-Known URI Registration

7.1.1 Registry Contents
7.2 OAuth 2.0 Authorization Server Metadata Registry

7.2.1 Registry Contents
7.3 OAuth 2.0 Dynamic Client Registration Metadata Registry

7.3.1 Registry Contents
7.4 OAuth 2.0 Extension Grant Parameters Registration

7.4.1 Registry Contents
7.5 OAuth 2.0 Extensions Error Registration

7.5.1 Registry Contents
7.6 OAuth Token Type Hints Registration

7.6.1 Registry Contents
8. Acknowledgments
9. References

9.1 Normative References
9.2 Informative References

Authors' Addresses

Figures
Figure 1: Example Flow

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 3/26

resource owner

requesting party

client

resource server

authorization server

1. Introduction

This specification defines an extension OAuth 2.0 [RFC6749] grant. The grant enhances OAuth capabilities in the following
ways:

The resource owner authorizes protected resource access to clients used by entities that are in a requesting party role.
This enables party-to-party authorization, rather than authorization of application access alone.
The authorization server and resource server interact with the client and requesting party in a way that is
asynchronous with respect to resource owner interactions. This lets a resource owner configure an authorization server
with authorization grant rules (policy conditions) at will, rather than authorizing access token issuance synchronously
just after authenticating.

For example, bank customer (resource owner) Alice with a bank account service (resource server) can use a sharing
management service (authorization server) hosted by the bank to manage access to her various protected resources by
spouse Bob, accounting professional Charline, and and financial information aggregation company Decide Account, all using
different client applications. Each of her bank accounts is a protected resource, and two different scopes of access she can
control on them are viewing account data and accessing payment functions.

An OPTIONAL second specification, [UMAFedAuthz], defines a means for an UMA-enabled authorization server and
resource server to be loosely coupled, or federated, in a resource owner context. This specification, together with
[UMAFedAuthz], constitutes UMA 2.0.

1.1 Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in [RFC2119].

Unless otherwise noted, all parameter names and values are case sensitive. JSON [RFC7159] data structures defined in this
specification MAY contain extension parameters that are not defined in this specification. Any entity receiving or retrieving a
JSON data structure SHOULD ignore extension parameters it is unable to understand. Extension names that are
unprotected from collisions are outside the scope of this specification.

1.2 Roles

The UMA grant enhances the OAuth definitions of entities in order to accommodate the requesting party role.

An entity capable of granting access to a protected resource, the "user" in User-Managed Access. The resource owner
MAY be an end-user (natural person) or MAY be a non-human entity treated as a person for limited legal purposes
(legal person), such as a corporation.

A natural or legal person that uses a client to seek access to a protected resource. The requesting party may or may not
be the same party as the resource owner.

An application that is capable of making requests for protected resources with the resource owner's authorization and
on the requesting party's behalf.

A server that hosts resources on a resource owner's behalf and is capable of accepting and responding to requests for
protected resources.

A server that protects, on a resource owner's behalf, resources hosted at a resource server.

1.3 Abstract Flow

The UMA grant enhances the abstract protocol flow of OAuth.

Figure 1 shows an example flow illustrating a variety of messaging paths and artifacts. The resource owner entity and its
communications with the authorization server are included for completeness, although policy condition setting is outside the
scope of this specification and communications among the other four entities are asynchrjonous with respect to resource

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 4/26

requesting party token (RPT)

permission

permission ticket

authorization process

owner actions. Further, although both claims pushing and interactive claims gathering are shown, both might not typically
be used in one scenario.

requesting authorization resource resource
 party client server server owner
 | | | | |
 | | |Set policy| |
 | | |conditions (anytime)|
 | | |<- - - - - - - - - -|
 | |Resource request (no access token) | |
 | |------------------------------------->| |
 | |401 response with initial permission | |
 | |ticket, authz server location | |
 | |<-------------------------------------| |
 | |Access token (RPT) request | | |
 | |with permission ticket, | | |
 | |claim token (push claims) | | |
 | |-------------------------->| | |
 | | +----|Authz | |
 | | +--->|assessment| |
 | |403 response with new | | |
 | |permission ticket, | | |
 | |need_info error, | | |
 | |redirect_user hint | | |
 | |<--------------------------| | |
 |Redirect | | | |
 |user with | | | |
 |permission | | | |
 |ticket | | | |
 |<-----------| | | |
 |Follow redirect to authz server | | |
 |--------------------------------------->| | |
 |Interactive claims gathering | | |
 |<- - - - - - - - - - - - - - - - - - - >| | |
 |Redirect back with new permission | | |
 |ticket | | |
 |<---------------------------------------| | |
 |Follow | | | |
 |redirect | | | |
 |to client | | | |
 |----------->| | | |
 | |RPT request with permission| | |
 | |ticket | | |
 | |-------------------------->| | |
 | | +----|Authz | |
 | | +--->|assessment| |
 | |Response with RPT and PCT | | |
 | |<--------------------------| | |
 | |Resource request with RPT | | |
 | |------------------------------------->| |
 | |Protected resource | | |
 | |<-------------------------------------| |

Figure 1: Example Flow

Following are key concepts relevant to this specification, as illustrated in the figure:

An OAuth access token associated with the UMA grant. An RPT is unique to a requesting
party, client, authorization server, resource server, and resource owner.

Authorized access to a particular resource with some number of scopes bound to that resource. A permission
ticket represents some number of requested permissions. An RPT represents some number of granted permissions.
Permissions are part of the authorization server's process and are opaque to the client.

A correlation handle representing requested permissions that is created and maintained by the
authorization server, initially passed to the client by the resource server, and presented by the client at the token
endpoint and during requesting party redirects.

The process through which the authorization server determines whether it should issue an RPT to
the client on the requesting party's behalf, based on a variety of inputs. A key component of the process is authorization

alec
if we treat the ticket as a scope, the the rotation is challenging. It shouldn’t double as a correlation handle?
Could needs_info return the scope, and keep the ticket & RS first flows as optional?
Maybe can change ticket in www-authenenticate to scope and clients goes straight to /authorize

alec

alec
update ticket description

alec
client makes OAuth compliant request with the returned scope

alec
client gets OAuth compliant callback with auth code

alec
token request with auth code

alec
if PCT is removed, the RPT can be ‘access-token’ again

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 5/26

claim

claim token
persisted claims token (PCT)

assessment. (See Section 1.3.1.)
A statement of the value or values of one or more attributes of an entity. The authorization server typically needs to

collect and assess one or more claims of the requesting party or client against policy conditions as part of protecting a
resource. The two methods available for UMA claims collection are claims pushing and interactive claims gathering.
Note: Claims collection might involve authentication for unique user identification, but depending on policy conditions
might additionally or instead involve the collection of non-uniquely identifying attributes, authorization for some
action (for example, see Section 3.3.3), or other statements of agreement.

A package of claims provided directly by the client to the authorization server through claims pushing.
A correlation handle issued by an authorization server that represents a set of claims collected

during one authorization process, available for a client to use in attempting to optimize a future authorization process.

Note: How the client acquired knowledge of the resource server's interface and the specific endpoint of the desired protected
resource is outside the scope of this specification. For example, the resource server might have a programmatic API or it
might serve up simple web pages, and the resource owner might have advertised the endpoint publicly on a blog or other
website, listed it in a discovery service, or emailed a link to a particular intended requesting party.

1.3.1 Authorization Process

The authorization process involves the following activities:

Claims collection. Claims pushing by a client is defined in Section 3.3.1, and interactive claims gathering with an end-
user requesting party is defined in Section 3.3.2.
Authorization assessment (as defined in Section 3.3.4). Authorization assessment involves the authorization server
assembling and evaluating policy conditions, scopes, claims, and any other relevant information sourced outside of
UMA claims collection flows, in order to mitigate access authorization risk.
Authorization results determination (as defined in Section 3.3.4). The authorization server either returns a success
code (as defined in Section 3.3.5), an RPT, and an optional PCT, or an error code (as defined in Section 3.3.6). If the
error code is need_info or request_submitted, the authorization server provides a permission ticket, giving the
client an opportunity to continue within the same authorization process (including engaging in further claims
collection).

Different choices of claims collection methods, other inputs to authorization assessment, and error codes might be best
suited for different deployment ecosystems. For example, where no pre-established relationship is expected between the
resource owner's authorization server and the requesting party, initial requesting party redirection might be a useful pattern,
at which point the authorization server might either authenticate the requesting party locally or serve as a relying party for a
remote identity provider. Where a common authorization server functions as an identity provider for all resource owners and
requesting parties, having the client push claim tokens sourced from that central server itself with a pre-negotiated format
and contents might be a useful pattern.

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 6/26

claims_interaction_endpoint

uma_profiles_supported

claims_redirect_uris

2. Authorization Server Metadata

The authorization server supplies metadata in a discovery document to declare its endpoints. The client uses this discovery
document to discover these endpoints for use in the flows defined in Section 3.

The authorization server MUST make a discovery document available. The structure of the discovery document MUST
conform to that defined in [OAuthMeta]. The discovery document MUST be available at an endpoint formed by
concatenating the string /.well-known/uma2-configuration to the issuer metadata value defined in [OAuthMeta],
using the well-known URI syntax and semantics defined in [RFC5785]. In addition to the metadata defined in [OAuthMeta],
this specification defines the following metadata for inclusion in the discovery document:

OPTIONAL. A static endpoint URI at which the authorization server declares that it interacts with end-user
requesting parties to gather claims. If the authorization server also provides a claims interaction endpoint URI as
part of its redirect_user hint in a need_info response to a client on authorization failure (see Section 3.3.6),
that value overrides this metadata value. Providing the static endpoint URI is useful for enabling interactive claims
gathering prior to any pushed-claims flows taking place, for example, for gathering authorization for subsequent
claim pushing (see Section 3.3.2).

OPTIONAL. UMA profiles and extensions supported by this authorization server. The value is an array of string
values, where each string value is a URI identifying an UMA profile or extension. As discussed in Section 4, an
authorization server supporting a profile or extension related to UMA SHOULD supply the specification's
identifying URI (if any) here.

If the authorization server supports dynamic client registration, it MUST allow client applications to register
claims_redirect_uri metadata, as defined in Section 3.3.2, using the following metadata field:

OPTIONAL. Array of one or more claims redirection URIs.

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 7/26

3. Flow Details

3.1 Client Requests Resource Without Providing an Access Token

The client requests a protected resource without providing any access token.

Note: This process does not assume that any relevant policy conditions have already been defined at the authorization server.

For an example of how the resource server can put resources under the protection of an authorization server, see
[UMAFedAuthz].

Example of a client request at a protected resource without providing an access token:

GET /users/alice/album/photo.jpg HTTP/1.1
Host: photoz.example.com
...

3.2 Resource Server Responds to Client's Tokenless Access Attempt

The resource server responds to the client's tokenless resource request.

The resource server MUST obtain a permission ticket from the authorization server to provide in its response, but the means
of doing so is outside the scope of this specification. For an example of how the resource server can obtain the permission
ticket, see [UMAFedAuthz].

The process of choosing what permissions to request from the authorization server may require interpretation and mapping
of the client's resource request. The resource server SHOULD request a set of permissions with scopes that is reasonable for
the client's resource request.

Note: In order for the resource server to know which authorization server to approach for the permission ticket and on which
resource owner's behalf, it needs to derive the necessary information using cues provided by the structure of the API where
the resource request was made, rather than by an access token. Commonly, this information can be passed through the URI,
headers, or body of the client's request. Alternatively, the entire interface could be dedicated to the use of a single resource
owner and protected by a single authorization server.

See Section 5.5 for permission ticket security considerations.

3.2.1 Resource Server Response to Client on Permission Request Success

If the resource server is able to provide a permission ticket from the authorization server, it responds to the client by
providing a WWW-Authenticate header with the authentication scheme UMA, with the issuer URI from the authorization
server's discovery document in an as_uri parameter and the permission ticket in a ticket parameter.

For example:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: UMA realm="example",
 as_uri="https://as.example.com",
 ticket="016f84e8-f9b9-11e0-bd6f-0021cc6004de"
...

3.2.2 Resource Server Response to Client on Permission Request Failure

If the resource server is unable to provide a permission ticket from the authorization server, then it includes a header of the
following form in its response to the client: Warning: 199 - "UMA Authorization Server Unreachable".

For example:

HTTP/1.1 403 Forbidden
Warning: 199 - "UMA Authorization Server Unreachable"
...

alec
could this be scope instead of ticket? the AS can still ‘generate’ opaque scopes if desired.
multi-rs considerations (location params etc)?

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 8/26

grant_type

ticket
claim_token

claim_token_format

pct

rpt

scope

Without an authorization server location and permission ticket, the client is unable to continue.

3.3 Client Seeks RPT on Requesting Party's Behalf

The client seeks issuance of an RPT.

This process assumes that:

The client has obtained a permission ticket and an authorization server location from the resource server.
The client has retrieved the authorization server's discovery document as needed.
The client has obtained a client identifier or a full set of client credentials as appropriate, either statically or
dynamically (for example, through [RFC7591] or [OIDCDynClientReg]). This grant works with clients of both
confidential and public types.

Initiation of this process has two options. One option is for the client to request an RPT from the token endpoint
immediately, as defined in Section 3.3.1. Claim pushing is available at this endpoint. The other option, if the authorization
server’s discovery document statically provided a claims interaction endpoint, is for the client to redirect the requesting party
immediately to that endpoint for interactive claims gathering, as defined in Section 3.3.2.

3.3.1 Client Request to Authorization Server for RPT

The client makes a request to the token endpoint by sending the following parameters:

REQUIRED. MUST be the value urn:ietf:params:oauth:grant-type:uma-ticket.

REQUIRED. The most recent permission ticket received by the client as part of this authorization process.

OPTIONAL. If this parameter is used, it MUST appear together with the claim_token_format parameter.
A string containing directly pushed claim information in the indicated format. It MUST be base64url encoded unless
specified otherwise by the claim token format. The client MAY provide this information on both first and subsequent
requests to this endpoint. The client and authorization server together might need to establish proper audience
restrictions for the claim token prior to claims pushing. See Section 5.7 and Section 6.2 for security and privacy
considerations regarding pushing of claims.

OPTIONAL. If this parameter is used, it MUST appear together with the claim_token parameter. A
string specifying the format of the claim token in which the client is directly pushing claims to the authorization server.
The string MAY be a URI. Examples of potential types of claim token formats are [OIDCCore] ID Tokens and SAML
assertions.
OPTIONAL. If the authorization server previously returned a PCT along with an RPT, the client MAY include the PCT
in order to optimize the process of seeking a new RPT. Given that some claims represented by a PCT are likely to
contain identity information about a requesting party, a client supplying a PCT in its RPT request MUST make a best
effort to ensure that the requesting party using the client now is the same as the requesting party that was associated
with the PCT when it was issued. See Section 5.7 and Section 6.2 for additional security and privacy considerations
regarding persistence of claims. The client MAY use the PCT for the same requesting party when seeking an RPT for a
resource different from the one sought when the PCT was issued, or a protected resource at a different resource server
entirely. See Section 5.2 for additional PCT security considerations. See Section 3.3.5 for the form of the authorization
server's response with a PCT.
OPTIONAL. Supplying an existing RPT (which MAY be expired) gives the authorization server the option of upgrading
that RPT instead of issuing a new one (see Section 3.3.5.1 for more about this option).

OPTIONAL. A string of space-separated values representing requested scopes. For the authorization server to
consider any requested scope in its assessment, the client MUST have been pre-registered for the same scope with the
authorization server. The client should consult the resource server's API documentation for details about which scopes
it can expect the resource server's initial returned permission ticket to represent as part of the authorization
assessment (see Section 3.3.4).

Example of a request message with no optional parameters (line breaks are shown only for display convenience):

POST /token HTTP/1.1
Host: as.example.com
Authorization: Basic jwfLG53^sad$#f
...
grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Auma-ticket
&ticket=016f84e8-f9b9-11e0-bd6f-0021cc6004de

alec
keep the grant type, since there is no code here? it’s _not_ client_creds

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 9/26

client_id
ticket
claims_redirect_uri

state

Example of a request message that includes an existing RPT for upgrading, a scope being sought that was previously
registered with the authorization server, and a PCT and a claim token for consideration in the authorization process:

POST /token HTTP/1.1
Host: as.example.com
Authorization: Basic jwfLG53^sad$#f
...
grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Auma-ticket
&ticket=016f84e8-f9b9-11e0-bd6f-0021cc6004de
&claim_token=eyj0...
&claim_token_format=http%3A%2F%2Fopenid.net%2Fspecs%2Fopenid-connect-core-1_0.html%23IDToken
&pct=c2F2ZWRjb25zZW50
&rpt=sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv
&scope=read

This specification provides a means to define profiles of claim token formats for use with UMA (see Section 4). The
authorization server SHOULD document the profiles it supports in its discovery document.

3.3.2 Client Redirect of Requesting Party to Authorization Server for Interactive Claims-Gathering

The client redirects an end-user requesting party to the authorization server's claims interaction endpoint for one or more
interactive claims-gathering processes as the authorization server requires. These can include direct interactions, such as
account registration and authentication local to the authorization server as an identity provider, filling out a questionnaire,
or asking the user to authorize subsequent collection of claims by interaction or pushing, and persistent storage of such
claims (for example, as associated with a PCT). Interactions could also involve further redirection, for example, for federated
(such as social) authentication at a remote identity provider, and other federated claims gathering. See Section 5.7 and
Section 6.2 for security and privacy considerations regarding pushing and persistence of claims.

The client might have initiated redirection immediately on receiving an initial permission ticket from the resource server, or,
for example, in response to receiving a redirect_user hint in a need_info error (see Section 3.3.6).

In order for the client to redirect the requesting party immediately on receiving the initial permission ticket from the
resource server, this process assumes that the authorization server has statically declared its claims interaction endpoint in
its discovery document.

The client constructs the request URI by adding the following parameters to the query component of the claims interaction
endpoint URI using the application/x-www-form-urlencoded format:

REQUIRED. The client's identifier issued by the authorization server.
REQUIRED. The most recent permission ticket received by the client as part of this authorization process.

REQUIRED if the client has pre-registered multiple claims redirection URIs or has pre-registered no
claims redirection URI; OPTIONAL only if the client has pre-registered a single claims redirection URI. The URI to
which the client wishes the authorization server to direct the requesting party's user agent after completing its
interaction. The URI MUST be absolute, MAY contain an application/x-www-form-urlencoded-formatted
query parameter component that MUST be retained when adding additional parameters, and MUST NOT contain a
fragment component. The client SHOULD pre-register its claims_redirect_uri with the authorization server, and
the authorization server SHOULD require all clients, and MUST require public clients, to pre-register their claims
redirection endpoints (see Section 2). Claims redirection URIs are different from the redirection URIs defined in
[RFC6749] in that they are intended for the exclusive use of requesting parties and not resource owners. Therefore,
authorization servers MUST NOT redirect requesting parties to pre-registered redirection URIs defined in [RFC6749]
unless such URIs are also pre-registered specifically as claims redirection URIs. If the URI is pre-registered, this URI
MUST exactly match one of the pre-registered claims redirection URIs, with the matching performed as described in
Section 6.2.1 of [RFC3986] (Simple String Comparison).

RECOMMENDED. An opaque value used by the client to maintain state between the request and callback. The
authorization server includes this value when redirecting the user agent back to the client. The use of this parameter is
for preventing cross-site request forgery (see Section 5.1 for further security information).

Example of a request issued by a client application (line breaks are shown only for display convenience):

alec
remove this endpoint since it’s OAuth authorize?

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 10/26

ticket

state

GET /rqp_claims?client_id=some_client_id
&ticket=016f84e8-f9b9-11e0-bd6f-0021cc6004de
&claims_redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fredirect_claims
&state=abc HTTP/1.1
Host: as.example.com

3.3.3 Authorization Server Redirect of Requesting Party Back to Client After Interactive Claims-Gathering

At the conclusion of a successful interaction with the requesting party, the authorization server returns the requesting party
to the client, adding the following parameters to the query component of the claims redirection URI using the
application/x-www-form-urlencoded format:

REQUIRED. A permission ticket that allows the client to make further requests to the authorization server during
this authorization process. The value MUST NOT be the same as the one the client used to make its request.

OPTIONAL. The same state value that the client provided in the request. It MUST be present if and only if the client
provided it (see Section 5.1 for further security information).

Note: Interactive claims-gathering processes are outside the scope of this specification. The purpose of the interaction is for
the authorization server to gather information for its own authorization assessment purposes. This redirection does not
involve sending any of the information back to the client.

The authorization server MAY use interactive claims-gathering to request authorization from the requesting party for
persisting claims across authorization processes. Such persisted claims will be represented by a PCT issued to the client in a
subsequent step.

The client MUST ignore unrecognized response parameters. If the request fails due to a missing, invalid, or mismatching
claims redirection URI, or if the client identifier is missing or invalid, the authorization server SHOULD inform the
requesting party of the error and MUST NOT automatically redirect the user agent to the invalid redirection URI.

If the request fails for reasons other than a missing or invalid claims redirection URI, the authorization server informs the
client by adding an error parameter to the query component of the claims redirection URI as defined in Section 4.1.2.1 of
[RFC6749].

Example of a response issued by an authorization server (line breaks are shown only for display convenience):

HTTP/1.1 302 Found
Location: https://client.example.com/redirect_claims?
ticket=cHJpdmFjeSBpcyBjb250ZXh0LCBjb250cm9s&state=abc

3.3.4 Authorization Assessment and Results Determination

When the authorization server has received a request for an RPT from a client as defined in Section 3.3.1, it assesses whether
the client is authorized to receive the requested RPT and determines the results.

The authorization server MUST apply the following conceptual authorization assessment calculation in determining
authorization results. Note: As this calculation is internal to authorization server operations, its particulars are outside the
scope of this specification.

1. Assemble a set called RegisteredScopes containing the scopes for which the client is pre-registered (either
dynamically or through some static process) at the authorization server. Assemble a set called RequestedScopes
containing the scopes the client most recently requested at the token endpoint. The permission ticket that was
presented by the client at the token endpoint represents some number of resources, each with some number of
scopes; for each of those resources, assemble a set called TicketScopes(resource) containing the scopes associated
with that resource.

2. For each resource in the permission ticket, determine a final set of requested scopes as follows:
RequestedScopes(resource)={TicketScopes(resource) ∪ {RegisteredScopes ∩ RequestedScopes}}. Treat each
scope in {RegisteredScopes ∩ RequestedScopes} as matching any available scope associated with a resource found
in the permission ticket.

3. For each RequestedScopes(resource) set, determine all operative policy conditions, and claims and other relevant
information serving as input to them, and evaluate its authorization status.

4. For each scope in RequestedScopes(resource) that passes the evaluation, add it to a set called
CandidateGrantedScopes(resource).

alec
remove this as callback is oauth auth code callback (with code= not ticket=)

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 11/26

Note: Claims and other information gathered during one authorization process may become out of date in terms of their
relevance for future authorization processes. The authorization server is responsible for managing such relevance wherever
information associated with a PCT, or other persistently stored information, is used as input to authorization, including
policy conditions themselves.

Note: Since the authorization server's policy expression and evaluation capabilities are outside the scope of this specification,
any one implementation might take a simple or arbitrarily complex form, with varying abilities to combine or perform
calculations over claims and their values. For example, logical operations such as accepting "either claim value A or claim
value B" as correct are possible to implement.

In the authorization results phase, the authorization server examines each CandidateGrantedScopes(resource) set to
determine whether to issue an RPT and what permissions should be associated with it. If all RequestedScopes(resource) sets
can be granted, then the authorization server subsequently responds with a success code and issues an RPT containing
CandidateGrantedScopes for each resource.

Otherwise, the authorization server subsequently issues either an RPT containing CandidateGrantedScopes for each
resource, or one of the error codes, as appropriate. The reason for the two options is that granting only partial scopes might
not be useful for the client's and requesting party's purposes in seeking authorization for access. The choice of error depends
on policy conditions and the authorization server's implementation choices. The conditions for the need_info,
request_denied, and request_submitted error codes are dependent on authorization assessment and thus these codes
might be more likely than the others to be issued subsequent to such a calculation.

The following example illustrates authorization assessment and partial results.

The resource server has three of the resource owner's resources of interest to the client and requesting party, photo1
and photo2 with scopes view, resize, print, and download, and album with scopes view, edit, and download.
It considers photo1 and photo2 to be logically "inside" album.
Though the exact contents of RPTs, permissions, and permission requests are opaque to the client, the resource server
has documented its API, available scopes, and permission requesting practices. For example, if the client requests an
album resource, it expects that the resource server will request a permission for the album with a scope that
approximates the attempted client operation, but will also request permissions for all the photos "inside" the album,
with view scope only.
The client has a pre-registered scope of download with the authorization server. This enables the client later to request
this scope dynamically on behalf of its requesting party from the token endpoint. The authorization server assembles
the set RegisteredScopes with contents of scope download.
The client requests the album resource in an attempt to edit it, so the resource server obtains a permission ticket with
three permissions in it: for album with a scope of edit, and for photo1 and photo2, each with a scope of view. The
authorization server assembles the following sets: TicketScopes(album) containing edit, TicketScopes(photo1)
containing view, and TicketScopes(photo2) containing view.
While asking for an RPT at the token endpoint, the client requests download scope on the requesting party's behalf.
The authorization server determines the contents of the following sets: RequestedScopes(album) containing edit and
download, RequestedScopes(photo1) containing view and download, and RequestedScopes(photo2) containing
view and download.
The resource owner has set policy conditions that allow access by this particular requesting party only to photo1 and
only for view scope.
Based on the authorization server's authorization assessment calculation, it determines the contents of the following
sets: CandidateGrantedScopes(album) containing no scopes, CandidateGrantedScopes(photo1) containing view,
and CandidateGrantedScopes(photo2) containing no scopes. This adds up to less than in the corresponding
RequestedScopes sets. The authorization server therefore has a choice whether to issue an RPT (in this case, containing
a permission for photo1 with view scope) or an error (say, request_denied, or request_submitted if has a way
to notify the resource owner about the album editing resource request and seek an added policy covering it).

See Section 5.6 for a discussion of authorization implementation threats.

3.3.5 Authorization Server Response to Client on Authorization Success

If the authorization server's assessment process results in issuance of permissions, it issues the RPT with which it has
associated the permissions by using the successful response form defined in Section 5.1 of [RFC6749].

The authorization server MAY return a refresh token. See Section 3.6 for more information about refreshing an RPT.

The authorization server MAY add the following parameters to its response:

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 12/26

pct

upgraded

OPTIONAL. A correlation handle representing claims and other information collected during this authorization
process, which the client is able to present later in order to optimize future authorization processes on behalf of a
requesting party. The PCT MUST be unguessable by an attacker. The PCT MUST NOT disclose claims from the
requesting party directly to possessors of the PCT. Instead, such claims SHOULD be associated by reference to the PCT
or expressed in an encrypted format that can be decrypted only by the authorization server that issued the PCT. See
Section 3.3.2 for more information about the end-user requesting party interaction option. See Section 5.2 for
additional PCT security considerations.

OPTIONAL. Boolean value. If the client submits an RPT in the request and the authorization server includes the
permissions of the RPT from the request as part of the newly issued RPT, then it MUST set this value to true. If it sets
the value to false or the value is absent, the client MUST act as if the newly issued RPT does not include the
permissions associated with the RPT from the request. (See Section 3.3.5.1.)

The authorization server MAY include any of the parameters defined in Section 5.1 of [RFC6749] on its response, except that
it SHOULD NOT include the scope parameter. This is because for an RPT's permissions, each scope is associated with a
specific resource, even though this association is opaque to the client. Note: The outcome of authorization assessment may
result in expiration periods for RPTs, permissions, and refresh tokens that can affect the client's later requests for refreshing
the RPT.

Example:

HTTP/1.1 200 OK
Content-Type: application/json
...

{
 "access_token":"sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "token_type":"Bearer"
}

Example with a PCT in the response:

HTTP/1.1 200 OK
Content-Type: application/json
...

{
 "access_token":"sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "token_type":"Bearer",
 "pct":"c2F2ZWRjb25zZW50"
}

3.3.5.1 Authorization Server Upgrades RPT

The authorization server MAY implement RPT upgrading. The authorization server SHOULD document its practices
regarding RPT upgrades and to act consistently with respect to RPT upgrades so as to enable clients to manage received
RPTs efficiently.

If the authorization server has implemented RPT upgrading, the client has submitted an RPT in its request, and the result is
success, the authorization server adds the permissions from the client's previous RPT to the RPT it is about to issue, setting
the value of upgraded in its response containing the upgraded RPT to true.

If the authorization server is upgrading an RPT, and the RPT string is new rather than repeating the RPT provided by the
client in the request, then the authorization server SHOULD revoke the existing RPT, if possible, and the client MUST
discard its previous RPT. If the authorization server does not upgrade the RPT but issues a new RPT, the client MAY retain
the existing RPT.

Example with upgraded in the response:

alec
1 OAuth UMA profile “uma-lite”

2 UMA extension to ^

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 13/26

claim_token_format

claim_type

friendly_name

issuer

name

ticket

required_claims

redirect_user

invalid_grant

invalid_scope

need_info

request_denied

request_submitted

HTTP/1.1 200 OK
Content-Type: application/json
...

{
 "access_token":"sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "token_type":"Bearer",
 "upgraded":true
}

3.3.6 Authorization Server Response to Client on Authorization Failure

If the client's request to the token endpoint results in failure, the authorization server responds with an error, as defined in
Section 5.2 of [RFC6749] and as follows.

If the provided permission ticket was not found at the authorization server, or the provided permission ticket
has expired, or any other original reasons to use this error code are found as defined in [RFC6749], the authorization
server responds with the HTTP 400 (Bad Request) status code.

At least one of the scopes included in the request does not match an available scope for any of the resources
associated with requested permissions for the permission ticket provided by the client. The authorization server MAY
also return this error when at least one of the scopes included in the request does not match a scope for which the client
is pre-registered with the authorization server. The authorization server responds with the HTTP 400 (Bad Request)
status code.

The authorization server needs additional information in order for a request to succeed, for example, a provided
claim token was invalid or expired, or had an incorrect format, or additional claims are needed to complete the
authorization assessment. The authorization server responds with the HTTP 403 (Forbidden) status code. It MUST
include a ticket parameter, and it MUST also include either the required_claims parameter or the
redirect_user parameter, or both, as hints about the information it needs.

REQUIRED. A permission ticket that allows the client to make a further request to the authorization
server's token endpoint as part of this same authorization process, potentially immediately. The value MUST
NOT be the same as the one the client used to make its request.

An array of objects that describe the required claims, with the following subparameters:
OPTIONAL. An array of strings specifying a set of acceptable formats for a claim

token pushed by the client containing this claim, as defined in Section 3.3.1. Any one of the
referenced formats would satisfy the authorization server's requirements. Each string MAY be a
URI.

OPTIONAL. A string, indicating the expected interpretation of the provided claim value.
The string MAY be a URI.

OPTIONAL. A string that provides a human-readable form of the claim's name. This
can be useful as a "display name" for use in user interfaces in cases where the actual name is
complex or opaque, such as an OID or a UUID.

OPTIONAL. An array of strings specifying a set of acceptable issuing authorities for the claim.
Any one of the referenced authorities would satisfy the authorization server's requirements. Each
string MAY be a URI.

OPTIONAL. A string (which MAY be a URI) representing the name of the claim; the "key" in a
key-value pair.

The claims interaction endpoint URI to which to redirect the end-user requesting party at the
authorization server to continue the process of interactive claims gathering, as defined in Section 3.3.2. For
example, the authorization server could require the requesting party to log in to an account, or fill out a
CAPTCHA to help prove humanness, or perform any number of other interactive tasks. If the requesting
party is not an end-user, then no client action is possible on receiving the hint. If a static claims interaction
endpoint was also provided in the authorization server's discovery document, then this value overrides the
static value. Providing a value in this response might be appropriate, for example, if the URI needs to be
customized per requesting party with a query parameter.

The client is not authorized to have these permissions. The authorization server responds with the HTTP
403 (Forbidden) status code.

alec
—

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 14/26

ticket

interval

The authorization server requires intervention by the resource owner to determine whether the client is authorized to
have these permissions. The authorization server responds with the HTTP 403 (Forbidden) status code. It MUST
include a ticket parameter and MAY include an interval parameter.

REQUIRED. A permission ticket that allows the client to make one or more later polling requests to the
token endpoint as part of this same authorization process, when the resource owner might have completed
some approval (or denial) action. The value MUST NOT be the same as the one the client used to make its
request.

OPTIONAL. The minimum amount of time in seconds that the client SHOULD wait between polling
requests to the token endpoint. See Section 5.5 for security considerations in scenarios involving polling and
consequences for permission ticket lifetimes.

Example when the permission ticket was not found or has expired:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store
...

{
 "error":"invalid_grant"
}

Example of a need_info response with hints about required claims:

HTTP/1.1 403 Forbidden
Content-Type: application/json
Cache-Control: no-store
...

{
 "error":"need_info",
 "ticket":"ZXJyb3JfZGV0YWlscw==",
 "required_claims":[
 {
 "claim_token_format":[
 "http://openid.net/specs/openid-connect-core-1_0.html#IDToken"
],
 "claim_type":"urn:oid:0.9.2342.19200300.100.1.3",
 "friendly_name":"email",
 "issuer":[
 "https://example.com/idp"
],
 "name":"email23423453ou453"
 }
]
}

Example of a need_info response with a hint to redirect the requesting party to a claims interaction endpoint:

HTTP/1.1 403 Forbidden
Content-Type: application/json
Cache-Control: no-store
...

{
 "error":"need_info",
 "ticket":"ZXJyb3JfZGV0YWlscw==",
 "redirect_user":"https://as.example.com/rqp_claims?id=2346576421"
}

Example when the client was not authorized to have the permissions:

alec
remove from ‘uma-lite’

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 15/26

HTTP/1.1 403 Forbidden
Content-Type: application/json
Cache-Control: no-store
...

{
 "error":"request_denied"
}

Example when the authorization server requires resource owner intervention, including the optional interval parameter:

HTTP/1.1 403 Forbidden
Content-Type: application/json
Cache-Control: no-store
...

{
 "error":"request_submitted",
 "ticket?:?ZXJyb3JfZGV0YWlscw==",
 "interval": 5
}

3.4 Client Requests Resource and Provides an RPT

The client requests the resource, now in possession of an RPT. The client uses [RFC6750] for a bearer token, and any other
suitable presentation mechanism for an RPT of another access token type.

Example of a client request for the resource carrying an RPT:

GET /users/alice/album/photo.jpg HTTP/1.1
Authorization: Bearer sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv
Host: photoz.example.com
...

3.5 Resource Server Responds to Client's RPT-Accompanied Resource Request

The resource server responds to the client's RPT-accompanied resource request.

If the resource request fails, the resource server responds as if the request were unaccompanied by an access token, as
defined in Section 3.2.

The resource server MUST NOT give access in the case of an invalid RPT or an RPT associated with insufficient
authorization.

For an example of how the resource server can introspect the RPT and its permissions at the authorization server prior to
responding to the client's request, see [UMAFedAuthz].

3.6 Authorization Server Refreshes RPT

As noted in Section 3.3.5, when issuing an RPT, the authorization server MAY also issue a refresh token.

Having previously received a refresh token from the authorization server, the client MAY use the refresh token grant as
defined in [RFC6749] to attempt to refresh an expired RPT. If the client includes the scope parameter in its request, the
authorization server MAY limit the scopes in the permissions associated with any resulting refreshed RPT to the scopes
requested by the client.

The authorization server MUST NOT perform an authorization assessment calculation on receiving the client's request to
refresh an RPT.

3.7 Client Requests Token Revocation

If the authorization server presents a token revocation endpoint as defined in [RFC7009], the client MAY use the endpoint to
request revocation of an RPT (access token), refresh token, or PCT previously issued to it on behalf of a requesting party.
This specification defines the following token type hint value:

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 16/26

pct Helps the authorization server optimize lookup of a PCT for revocation.

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 17/26

4. Profiles and Extensions

An UMA profile restricts UMA's available options. An UMA extension defines how to use UMA's extensibility points. The two
can be combined. Some reasons for creating profiles and extensions include:

A profile restricting options in order to tighten security
A profile/extension restricting options and adding messaging parameters for use with a specific industry API
A profile that documents a specific URI, format, and interpretation for pushed claim tokens (see Section 3.3.1)
An extension that defines additional metadata for the authorization server discovery document to define machine-
readable usage details

The following actions are RECOMMENDED regarding the creation and use of profiles and extensions:

The creator of a profile or extension related to UMA SHOULD assign it a uniquely identifying URI.
The authorization server supporting a profile or extension related to UMA with such a URI SHOULD supply the
identifying URI in its uma_profiles_supported metadata (see Section 2).

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 18/26

5. Security Considerations

This specification relies mainly on OAuth 2.0 security mechanisms as well as transport-level security. Thus, implementers
are strongly advised to read [BCP195] and the security considerations in [RFC6749] (Section 10) and [RFC6750] (Section 5)
along with the security considerations of any other OAuth token-defining specifications in use, along with the entire
[RFC6819] specification, and apply the countermeasures described therein. As well, implementers should take into account
the security considerations in all other normatively referenced specifications.

The following sections describe additional security considerations.

5.1 Cross-Site Request Forgery

Redirection used for gathering claims interactively from an end-user requesting party (described in Section 3.3.2) creates the
potential for cross-site request forgery (CSRF). This may be the result of an open redirect if the authorization server does not
force the client to pre-register its claims redirection endpoint, and server-side artifact tampering if the client does not avail
itself of the state parameter.

A CSRF attack against the authorization server's claims interaction endpoint can result in an attacker obtaining
authorization for access through a malicious client without involving or alerting the end-user requesting party. The
authorization server MUST implement CSRF protection for its claims interaction endpoint and ensure that a malicious client
cannot obtain authorization without the awareness and involvement of the requesting party.

If the client uses the interactive claims gathering feature, it MUST implement CSRF protection for its claims redirection URI.
It SHOULD use the state parameter when redirecting the requesting party to the claims interaction endpoint. The value of
the state parameter MUST be unguessable by an attacker. Once the authorization server redirects the requesting party
back, with the required binding value contained in the state parameter, the client MUST check that the value of the state
parameter received is equal to the value sent in the initial redirection request. Depending on the type of application, a client
has several methods for storing and later verifying the value of the state parameter in between the initial redirect and the
eventual resulting request to the claims redirection URI, including storage in a server-side session-bound variable,
cryptographic derivation from a browser cookie, or secure application-level storage. The client MUST treat requests
containing an invalid or unknown state parameter value as an error.

The state parameter SHOULD NOT include sensitive client or requesting party information in plain text, as it is
transmitted through third-party components (the requesting party's user agent) and could be stored insecurely.

5.2 RPT and PCT Exposure

When a client redirects an end-user requesting party to the claims interaction endpoint, the client provides no a priori
context to the authorization server about which user is appearing at the endpoint, other than implicitly through the
permission ticket. Thus, a malicious client has the opportunity to switch end-users -- say, enabling malicious end-user Carlos
to impersonate legitimate end-user Bob, who might be represented by a PCT already in that client's possession and might
even have authorized the issuance of that PCT -- after the redirect completes and before it returns to the token endpoint to
seek permissions.

To mitigate this threat, the authorization server, with the support of the resource owner, should consider the following
strategies in combination.

Require that the requesting party legitimately represent the wielder of the RPT on a legal or contractual level. This
solution alone does not reduce the risk from a technical perspective.
Gather claims interactively from an end-user requesting party that demonstrate that some sufficiently strong level of
authentication was performed.
Require claims to have a high degree of freshness in order for them to satify policy conditions.
Tighten time-to-live strategies around RPTs and their associated permissions (see Section 6.1).

The client MUST only share the RPT (access token) with the resource server and authorization server, as explained in Section
10.3 of [RFC6749], and thus MUST keep it confidential from the requesting party. Because a malicious requesting party (the
user of the client in the UMA grant) may have incentives to steal an RPT that the resource owner (the user of the client in
other OAuth grants) does not, this security consideration takes on especial importance.

The PCT is similar to a refresh token in that it allows non-interactive issuance of access tokens. The authorization server and
client MUST keep the PCT confidential in transit and storage, and MUST NOT share the PCT with any entity other than each
other. The authorization server MUST maintain the binding between the PCT and the client to which it was issued.

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 19/26

Given that the PCT represents a set of requesting party claims, a client supplying a PCT in its RPT request MUST make a best
effort to ensure that the requesting party using the client now is the same as the requesting party that was associated with the
PCT when it was issued. Different clients will have different capabilities in this respect; for example, some applications are
single-user and perform no local authentication, associating all PCTs with the "current user", while others might have more
sophisticated authentication and user mapping capabilities.

If the authorization server has reason to believe that a PCT is compromised, for example, if the PCT has been supplied by a
client that has "impossible geography" parameters, the authorization server should consider not using the claims based on
that PCT in its authorization assessment.

5.3 Strengthening RPT Protection Using Proof of Possession

After the client's resource request with an RPT, assuming the client sent an RPT of the bearer style such as defined in
[RFC6750], the resource server will have received from the client the entire secret portion of the token. This specification
assumes only bearer-type tokens because they are the only type standardized as of this specification's publication. However,
to strengthen protection for RPTs using a proof-of-possession approach, the resource server could receive an RPT that
consists of only a cryptographically signed token identifier, and then to validate the signature, it could, for example, submit
the token identifier to the token introspection endpoint to obtain the necessary key information. The details of this usage are
outside the scope of this specification.

5.4 Credentials-Guessing

Permission tickets and PCTs are additional credentials that the authorization server MUST prevent attackers from guessing,
as defined in Section 10.10 of [RFC6749].

5.5 Permission Ticket Management

Within the constraints of making permission ticket values unguessable, the authorization server MAY format the permission
ticket however it chooses, for example, either as a random string that references data held on the server or by including data
within the ticket itself.

Permission tickets MUST be single-use. This prevents susceptibility to a session fixation attack.

The authorization server MUST invalidate a permission ticket when the client presents the permission ticket to either the
token endpoint or the claims interaction endpoint, or when the permission ticket expires, whichever occurs first.

The client SHOULD check that the value of the ticket parameter it receives back from the authorization server in each
response and each redirect of the requesting party back to it differs from the one it sent to the server in the initial request or
redirect.

If the authorization server has reason to believe that a permission ticket is compromised, for example, because it has seen the
permission ticket before and it believes the first appearance was from a legitimate client and the second appearance is from
an attacker, it should consider invalidating any access tokens based on this evidence.

Given that scenarios involving the request_submitted error code are likely to involve polling intervals, the permission
ticket needs to last long enough to give the client a chance to attempt a polling request, which then needs to figure into other
permission ticket security considerations.

5.6 Naive Implementations of Default-Deny Authorization

While a reasonable approach for most scenarios is to implement the classic stance of default-deny ("everything that is not
expressly allowed is forbidden"), corner cases can inadvertently result in default-permit behavior. For example, it is
insufficient to create default "empty" policy conditions stating "no claims are needed", and then accept an empty set of
supplied claims as sufficient for access during authorization assessment.

5.7 Requirements for Pre-Established Trust Regarding Claim Tokens

When a client makes an RPT request, it has the opportunity to push a claim token to attempt to satisfy policy conditions (see
Section 3.3.1).

Claim tokens of any format typically contain audience restrictions, and an authorization server would not typically be in the
primary audience for a claim token held or generated by a client. It is RECOMMENDED to document how the client,
authorization server, requesting party, and any additional ecosystem entities and parties will establish a trust relationship
and communicate any required keying material in a claim token profile, as described in Section 4. Authorization servers are

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 20/26

RECOMMENDED not to accept claim tokens pushed by untrusted clients and not to ignore audience restrictions found in
claim tokens pushed by clients.

A malicious client could push a claim token to the authorization server (revealing the claims therein; see Section 6.2) to seek
resource access on its own behalf prior to any opportunity for an end-user requesting party to authorize claims collection. It
is RECOMMENDED either for trust relationships established by the ecosystem parties to include prior requesting party
authorization as required, or for end-user requesting party authorization to be gathered interactively prior to claims pushing,
as described in Section 3.3.2.

Some deployments could have exceptional circumstances allowing the authorization server to validate claim tokens. For
example, if the authorization server itself is also the identity provider for the requesting party, then it would be able to
validate any ID token that the client pushes as a claim token and also validate the client to which it was issued.

5.8 Profiles and Trust Establishment

Parties that are operating and using UMA software entities may need to establish agreements about the parties' rights and
responsibilities on a legal or contractual level, along with common interpretations of UMA constructs for consistent and
expected software behavior. These agreements can be used to improve the parties' respective security postures. Written
profiles are a key mechanism for conveying and enforcing these agreements. Section 4 discusses profiling. See [UMA-legal]
to learn about frameworks and tools to assist in the legal and contractual elements of deploying UMA-enabled services.

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 21/26

6. Privacy Considerations

UMA has the following privacy considerations.

6.1 Policy Condition Setting, Time-to-Live Management, and Removal of Authorization Grants

The setting of policy conditions, the resource owner-authorization server interface, and the resource owner-resource server
interface are outside the scope of this specification. (For an example of how a secure and authorized resource owner context
can be established between the resource server and authorization server, see [UMAFedAuthz].)

A variety of flows and user interfaces for policy condition setting involving user agents for both of these servers are possible,
each with different privacy consequences for end-user resource owners. As well, various authorization, security, and time-to-
live strategies could be applied on a per-resource owner basis or a per-authorization server basis, as the entities see fit.
Validity periods of RPTs, refresh tokens, permissions, caching periods for responses, and even OAuth client credentials are
all subject to management. Different time-to-live strategies might be suitable for different resources and scopes.

In order to account for modifications of policy conditions that result in the withdrawal of authorization grants (for example,
fewer scopes, fewer resources, or resources available for a shorter time) in as timely a fashion as possible, the authorization
server should align its strategies for management of these factors with resource owner needs and actions rather than those of
clients and requesting parties. For example, the authorization server may want to invalidate a client's RPT and refresh token
as soon as a resource owner changes policy conditions in such a way as to deny the client and its requesting party future
access to a full set of previously held permissions.

6.2 Requesting Party Information at the Authorization Server

Claims are likely to contain personal, personally identifiable, and sensitive information, particularly in the case of requesting
parties who are end-users.

If the authorization server supports persisting claims for any length of time (for example, to support issuance of PCTs), then
it SHOULD provide a secure and privacy-protected means of storing claim data. It is also RECOMMENDED for the
authorization server to use an interactive claims-gathering flow to ask an end-user requesting party for authorization to
collect any claims subsequently and to persist their claims (for example, before issuing a PCT), if no prior requesting party
authorization has been established among the ecosystem parties (see Section 5.7).

6.3 Resource Owner Information at the Resource Server

Since the client's initial request for a protected resource is made in an unauthorized and unauthenticated context, such
requests are by definition open to all users. The response to that request includes the authorization server's location to
enable the client to request an access token and present claims. If it is known out of band that authorization server is owned
and controlled by a single user, or visiting the authorization server contains other identifying information, then an
unauthenticated and unauthorized client would be able to tell which resource owner is associated with a given resource.
Other information about the resource owner, such as organizational affiliation or group membership, may be gained from
this transaction as well.

6.4 Profiles and Trust Establishment

Parties that are operating and using UMA software entities may need to establish agreements about mutual rights,
responsibilities, and common interpretations of UMA constructs for consistent and expected software behavior. These
agreements can be used to improve the parties' respective privacy postures. See Section 5.8 for more information. Additional
considerations related to Privacy by Design concepts are discussed in [UMA-PbD].

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 22/26

7. IANA Considerations

This document makes the following requests of IANA.

7.1 Well-Known URI Registration

This specification registers the well-known URI defined in Section 2, as required by Section 5.1 of [RFC5785].

7.1.1 Registry Contents

URI suffix: uma2-configuration
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 2 in this document

7.2 OAuth 2.0 Authorization Server Metadata Registry

This specification registers OAuth 2.0 authorization server metadata defined in Section 2, as required by Section 7.1 of
[OAuthMeta].

7.2.1 Registry Contents

Metadata name: claims_interaction_endpoint
Metadata description: endpoint metadata
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 2 in this document

Metadata name: uma_profiles_supported
Metadata description: profile/extension feature metadata
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 2 in this document

7.3 OAuth 2.0 Dynamic Client Registration Metadata Registry

This specification registers OAuth 2.0 dynamic client registration metadata defined in Section 2, as required by Section 4.1 of
[RFC7591].

7.3.1 Registry Contents

Metadata name: claims_redirect_uris
Metadata description: claims redirection endpoints
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 2 in this document

7.4 OAuth 2.0 Extension Grant Parameters Registration

This specification registers the parameters defined in Section 3.3.1, as required by Section 11.2 of [RFC6749].

7.4.1 Registry Contents

Parameter name: claim_token
Parameter usage location: client request, token endpoint
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 3.3.1 in this document

Parameter name: pct
Parameter usage location: client request, token endpoint
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 3.3.1 in this document

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 23/26

Parameter name: pct
Parameter usage location: authorization server response, token endpoint
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 3.3.5 in this document

Parameter name: rpt
Parameter usage location: client request, token endpoint
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 3.3.1 in this document

Parameter name: ticket
Parameter usage location: client request, token endpoint
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 3.3.1 in this document

Parameter name: upgraded
Parameter usage location: authorization server response, token endpoint
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 3.3.5 in this document

7.5 OAuth 2.0 Extensions Error Registration

This specification registers the errors defined in Section 3.3.6, as required by Section 11.4 of [RFC6749].

7.5.1 Registry Contents

Error name: need_info (and its subsidiary parameters)
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 3.3.6 in this document
Error usage location: authorization server response, token endpoint

Error name: request_denied
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 3.3.6 in this document
Error usage location: authorization server response, token endpoint

Error name: request_submitted (and its subsidiary parameters)
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 3.3.6 in this document
Error usage location: authorization server response, token endpoint

7.6 OAuth Token Type Hints Registration

This specification registers the errors defined in Section 3.7, as required by Section 4.1.2 of [RFC7009].

7.6.1 Registry Contents

Hint value: pct
Change controller: Kantara Initiative User-Managed Access Work Group - staff@kantarainitiative.org
Specification document: Section 3.7 in this document

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 24/26

8. Acknowledgments

The following people made significant text contributions to the specification:

Paul C. Bryan, ForgeRock US, Inc. (former editor)
Domenico Catalano, Oracle (former author)
Mark Dobrinic, Cozmanova
George Fletcher, AOL
Thomas Hardjono, MIT (former editor)
Andrew Hindle, Hindle Consulting Limited
Lukasz Moren, Cloud Identity Ltd
James Phillpotts, ForgeRock
Christian Scholz, COMlounge GmbH (former editor)
Mike Schwartz, Gluu
Cigdem Sengul, Nominet UK
Jacek Szpot, Newcastle University

Additional contributors to this specification include the Kantara UMA Work Group participants, a list of whom can be found
at [UMAnitarians].

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 25/26

9. References

9.1 Normative References

[BCP195] Sheffer, Y., “Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS)”, May 2015, <https://tools.ietf.org/html/bcp195>.

[OIDCCore] Sakimura, N., “OpenID Connect Core 1.0 incorporating errata set 1”, November 2014,
<http://openid.net/specs/openid-connect-core-1_0.html>.

[OIDCDynClientReg] Sakimura, N., “OpenID Connect Dynamic Client Registration 1.0 incorporating errata set 1”,
November 2014, <http://openid.net/specs/openid-connect-registration-1_0.html>.

[UMAFedAuthz] Maler, E., “Federated Authorization for User-Managed Access (UMA) 2.0”, January 2018,
<https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html>.

[OAuthMeta] Jones, M., “OAuth 2.0 Authorization Server Metadata”, November 2017,
<https://tools.ietf.org/html/draft-ietf-oauth-discovery-08>.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic
Syntax”, STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, <https://www.rfc-
editor.org/info/rfc3986>.

[RFC5785] Nottingham, M. and E. Hammer-Lahav, “Defining Well-Known Uniform Resource Identifiers
(URIs)”, RFC 5785, DOI 10.17487/RFC5785, April 2010, <https://www.rfc-
editor.org/info/rfc5785>.

[RFC6749] Hardt, D., Ed., “The OAuth 2.0 Authorization Framework”, RFC 6749, DOI 10.17487/RFC6749,
October 2012, <https://www.rfc-editor.org/info/rfc6749>.

[RFC6750] Jones, M. and D. Hardt, “The OAuth 2.0 Authorization Framework: Bearer Token Usage”,
RFC 6750, DOI 10.17487/RFC6750, October 2012, <https://www.rfc-editor.org/info/rfc6750>.

[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, “OAuth 2.0 Threat Model and Security
Considerations”, RFC 6819, DOI 10.17487/RFC6819, January 2013, <https://www.rfc-
editor.org/info/rfc6819>.

[RFC7159] Bray, T., Ed., “The JavaScript Object Notation (JSON) Data Interchange Format”, RFC 7159,
DOI 10.17487/RFC7159, March 2014, <https://www.rfc-editor.org/info/rfc7159>.

[RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and P. Hunt, “OAuth 2.0 Dynamic Client
Registration Protocol”, RFC 7591, DOI 10.17487/RFC7591, July 2015, <https://www.rfc-
editor.org/info/rfc7591>.

[RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, “OAuth 2.0 Token Revocation”, RFC 7009,
DOI 10.17487/RFC7009, August 2013, <https://www.rfc-editor.org/info/rfc7009>.

9.2 Informative References

[UMA-PbD] Maler, E., “Privacy by Design Implications of UMA”, 2018,
<https://kantarainitiative.org/confluence/display/uma/Privacy+by+Design+Implications+of+UMA>.

[UMAnitarians] Maler, E., “UMA Participant Roster”, 2017,
<https://kantarainitiative.org/confluence/display/uma/Participant+Roster>.

[UMA-legal] Maler, E., “UMA Legal”, 2017, <http://kantarainitiative.org/confluence/display/uma/UMA+Legal>.

https://tools.ietf.org/html/bcp195
https://tools.ietf.org/html/bcp195
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html
https://tools.ietf.org/html/draft-ietf-oauth-discovery-08
https://tools.ietf.org/html/draft-ietf-oauth-discovery-08
https://www.rfc-editor.org/info/rfc2119
http://dx.doi.org/10.17487/RFC2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
http://dx.doi.org/10.17487/RFC3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5785
http://dx.doi.org/10.17487/RFC5785
https://www.rfc-editor.org/info/rfc5785
https://www.rfc-editor.org/info/rfc6749
http://dx.doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
http://dx.doi.org/10.17487/RFC6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6819
http://dx.doi.org/10.17487/RFC6819
https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc7159
http://dx.doi.org/10.17487/RFC7159
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7591
http://dx.doi.org/10.17487/RFC7591
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc7009
http://dx.doi.org/10.17487/RFC7009
https://www.rfc-editor.org/info/rfc7009
https://kantarainitiative.org/confluence/display/uma/Privacy+by+Design+Implications+of+UMA
https://kantarainitiative.org/confluence/display/uma/Privacy+by+Design+Implications+of+UMA
https://kantarainitiative.org/confluence/display/uma/Participant+Roster
https://kantarainitiative.org/confluence/display/uma/Participant+Roster
http://kantarainitiative.org/confluence/display/uma/UMA+Legal
http://kantarainitiative.org/confluence/display/uma/UMA+Legal

10/20/22, 1:02 PM User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html 26/26

Authors' Addresses

Eve Maler (editor)
ForgeRock
EMail: eve.maler@forgerock.com

Maciej Machulak
HSBC
EMail: maciej.p.machulak@hsbc.com

Justin Richer
Bespoke Engineering
EMail: justin@bspk.io

mailto:eve.maler@forgerock.com
mailto:maciej.p.machulak@hsbc.com
mailto:justin@bspk.io

