
User-Managed
Access
(UMA) 101
Alec Laws, Kantara Initiative UMA Work Group chair

@aleclaws | @UMAWG

IIWXXXV | 15 Nov 2022

Topics

• Overview in OAuth terms
• UMA in action
• The technical big picture
• The UMA grant
• Federated authorization
• Authorization assessment
• Privacy and “BLT” (business-legal-technical) implications

2

Overview in OAuth terms

3

OAuth enables constrained delegation of
access to apps

4

Authorization
server

Resource server

Resource owner

Client

A T

Benefits:
• Flexible, clever API

security framework
• Alice can agree to app

connections and also
revoke them

D

TA authorization token D discovery

UMA adds cross-party sharing…

5

Resource server

Authorization
server

A T

Requesting
party

Client

Resource owner

Benefits:
• Secure delegation
• Alice can be absent

when Bob attempts
access

• Helpful error handling
for client applications

…in a wide ecosystem…

6

Resource server

Client

Authorization
server

A T

Requesting
partyResource owner

Benefits:
• Alice controls trust

between a service that
hosts her resources and
a service that authorizes
access to them

…of resource hosts

7

Client

Requesting
partyResource owner

Benefits:
• Resource hosts can
outsource authorization
management – and liability
– to a specialist service
• Alice can manage sharing
at a centralizable service
• Bob can revoke his
access to Alice’s resources

T

Resource serverResource server

A authorization token D discovery R resource registration P permission I token introspection C claims interaction

Resource server

Authorization
server

A T

PR I
D C

UMA user experience opportunities

8

Resource owner

UX Opt in

At run time

Share

Ahead of time

Approve

After the fact

Monitor

Anytime

Withdraw

Anytime

Benefits for service providers: a summary

9

9

True secure
delegation; no

password sharing

Scale permissioning
through self-service

API-first protection
strategy

Foster compliance
through standards

control

transparency

protection

Benefits for patients and consumers: a summary

10

10

Choice in sharing
with other parties

Convenient
sharing/approval with
no outside influence

Centralizable
monitoring and
management

Control of
who/what/how at

a fine grain

Typical use cases
• Alice to Bob (person to person):

• Patient-directed health data/device
sharing

• Discovering/aggregating pension
accounts and sharing access to financial
advisors

• Connected car data and car sharing
• Enterprise to Alice (initial RO is an

organization):
• Enterprise API access management
• Access delegation between employees

• Alice to Alice (person to self/app):
• Proactive policy-based control of app

connections

• Profiled or referenced by:
• OpenID Foundation HEART Working

Group
• UK Department for Work and Pensions

11

Known implementations
(more detail at tinyurl.com/umawg)

• ForgeRock – financial, healthcare, IoT, G2C…
• IDENTOS – healthcare, G2C
• Patient Centric Solutions – healthcare
• HIE of One / Trustee (open source) – healthcare
• Gravitee – API protection, financial
• Gluu (open source) – API protection, enterprise, G2C…
• Pauldron (open source) – healthcare
• RedHat Keycloak (open source) – API protection, enterprise, IoT…
• WSO2 (open source) – enterprise…

12

UMA in a nutshell
§ Developed at Kantara Initiative

§ V2.0 complete in Jan 2018

§ Leverages existing open standards:
§ OAuth2
§ OpenID Connect and SAML

§ Profiled by multiple industry sectors
§ Financial, healthcare

§ UMA business model effort (“BLT”) supports
legal licensing for personal digital assets
§ Example: Mother (legal guardian) manages sharing for

child (data subject); child becomes old enough and starts
to manage sharing herself

13

UMA in action

14

PatientShare

15

Ø Patient Alice creates a policy to
share with Dr. Erica, she selects
her sharing preferences, and
presses SHARE

Ø Patient sharing is easy!

SHARE

ForgeRock Identity Platform

16

The technical big picture

17

The marvelous spiral of delegated sharing, squared

1. The UMA grant of OAuth
enables Alice-to-Bob
delegation

2. UMA standardized an API
for federated authorization
at the AS to make it
centralizable

3. There are nicknames for
enhanced and new tokens
to keep them straight

18

The UMA extension grant adds…
docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

• Party-to-party: Resource owner authorizes protected-resource access
to clients used by requesting parties
• Asynchronous: Resource owner interactions are asynchronous with

respect to the authorization grant
• Policies: Resource owner can configure an AS with rules (policy

conditions) for the grant of access, vs. just authorize/deny
• Such configurations are outside UMA’s scope

19

Requesting
party

Resource
owner Client

UX Opt inShare ApproveMonitor Withdraw

UMA federated authorization adds…
docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html

• 1-to-n: Multiple RS’s in different domains can use an AS in another
domain
• “Protection API” automates resource protection
• Enables resource owner to monitor and control grant rules from one place

• Scope-grained control: Grants can increase/decrease by resource and
scope
• Resources and scopes: RS registers resource details at the AS to

manage their protection

20

Resource
server

Resource
server

Resource
server

Authorization
server

The UMA grant

21

Requesting
party

Resource
owner Client

UX Opt inShare ApproveMonitor Withdraw

Grant Prerequisites

• The Authorization Server knows about Alice’s resources
• The Authorization Server knows Alice’s policies for Bob to access
• The Client has an OAuth Client at the Authorization Server (or a way

to create one dynamically)

22

The UMA extension grant
flow and its options

23

The AS is acting as an agent for an absent RO

The client’s first resource request is tokenless

The RS provides a permission ticket and allows AS discovery

There are two claims collection options for meeting policy

Authorization assessment and token issuance has guardrails

RPTs can be upgraded, revoked, introspected, and refreshed

The permission ticket: how you start building
a bridge of trust
• Binds client, RS, and AS: Every entity may be loosely coupled; the

whole flow needs to be bound
• It’s like an overarching state parameter or “ticket-getting ticket”
• Or maybe even a bit like an authorization code

• Refreshed for security: The client can retry RPT requests after non-
fatal AS errors, using either claims collection option of the grant flow
• The AS refreshes the permission ticket when responding with such errors

24

Pushed claims scenario:
for wide-ish ecosystems

25

The AS is the requesting party’s IdP and the client is the RP

The client pushes its existing ID token to the token endpoint

More detail on the RS’s initial response to the client

The AS is in the primary audience for this token

Somewhat resembles SSO or the OAuth assertion grant, where
a token of expected type and contents is “turned in”

Interactive claims gathering
scenario: for wide ecosystems

26

A claims interaction endpoint must have been declared in the
discovery document to allow this flow

A key “metaclaim” to think about: consent to persist claims

The AS mediates gathering of claims from any source

Resembles the authorization code grant, but can apply to non-
unique identities and is repeatable and “buildable”

(eliding detail already seen)

A PCT potentially enables a better RqP experience next time;
the AS can then re-assess using claims on hand

Grant Review

• The client makes a tokenless request for a resource on behalf of Bob
• And receives a permission ticket and AS location

• The client makes a /token request with the ticket
• and receives next steps -- push claims and/or interactive claims gathering

• The client and Bob fulfill the policy
• The client makes a final /token request and receives an RPT (Oauth

access token)
• The client makes a request for the resource with the RPT
• And receives the response!

27

Federated authorization

28

Resource
server

Resource
server

Resource
server

Authorization
server

A new perspective on the
UMA grant

29

How does the RS know what ticket the AS is associating with
the RS’s recommended permissions?

Let’s standardize an interface at the AS for these jobs

How does the AS know when to start protecting resources?

Is there anything special about token introspection?

The protection API: how you federate authorization

• RS registers resources: This is required for an AS to be “on the job”
• Scopes can differ per resource
• Resource and scope metadata assist with policy setting interfaces

• RS chooses permissions: The RS interprets the client’s tokenless
resource request and requests permissions from the AS
• The AS then issues the initial permission ticket

• RS can introspect the RPT: UMA enhances the token introspection
response object
• RO controls AS-RS trust: The protection API is OAuth-protected
• The resource owner authorizes the scope uma_protection
• The issued token is called the PAT

30

Resource
server

Resource
server

Resource
server

Authorization
server

The resource registration
endpoint

31

Registering a resource puts it under protection

Setting policies can be done anytime after creation

Deregistering a resource removes it from protection

Resource and scope registration

• The RS is authoritative for what its resource
boundaries are
• It registers them as JSON-based descriptions
• There is a resource “type” parameter

• Scopes can be simple strings or URIs that
point to description documents

32

Create request:
POST /rreg/ HTTP/1.1 Content-Type: application/json
Authorization: Bearer MHg3OUZEQkZBMjcx
...
{

"resource_scopes":[
"patient/*.read"

],
"icon_uri":"http://www.example.com/icons/device23",
"name":"Awesome Medical Device Model 23",
"type":"https://www.hl7.org/fhir/observation.html"

}

Response:
HTTP/1.1 201 Created
Content-Type: application/json
Location: /rreg/rsrc1
...
{

"_id":"rsrc1"
}

The permission endpoint

33

The RS interprets the client’s tokenless (or insufficient-token)
resource request

The RS must be able to tell from the client’s request context
which RO and AS were meant

Request:
POST /perm/ HTTP/1.1
Content-Type: application/json
Host: as.example.com
Authorization: Bearer MHg3OUZEQkZBMjcx
...
{

"resource_id":"rsrc1",
"resource_scopes":[

"patient/*.read"
]

}

Response:
HTTP/1.1 201 Created
Content-Type: application/json
...
{

"Ticket":"016f84e8-f9b9-11e0-bd6f-
0021cc6004de"
}

The token introspection
endpoint

34

UMA enhances the token introspection response object

A permissions claim is added, with resource ID-bound scopes

Request:
POST /introspect HTTP/1.1
Host: as.example.com
Authorization: Bearer MHg3OUZEQkZBMjcx
…
token=mF_9.B5f-4.1JqM

Response:
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
…
{

"active":true,
"exp":1256953732,
"iat":1256912345,
"permissions":[

{
"resource_id":"rsrc1",
"resource_scopes":[

"patient/*.read"
],
"exp":1256953732

}
]

}

FedZ Review

• UMA provides a reusable description of resources and scopes
• The resource server is able to dynamically register resources and

scopes that it has – and knows how to enforce
• The RS and AS determine the appropriate access without the Clients

involvement
• Based on request hints, RO policy, presented RqP, etc

• The RS enforces access based on the AS direction (on behalf of Alice)

35

Authorization assessment

36

Authorization assessment: how the AS adheres to the
RO’s wishes in the larger context

37

The client can request scopes at the token endpoint, but must
have pre-registered them with the AS for it to work

Permissions associated with the ticket can add to total
requested scopes

If authorization assessment results in only a subset of client-
desired scopes, the AS can choose to error

The AS treats the scopes in this intersection as matching any
available scope associated with a resource in the ticket

Privacy and “BLT” implications

38

Relevance for privacy
• Features relevant to privacy regulations (GDPR, CCPA, OB, PSD2, CDR,

HHS ONC info blocking rules...):
• Asynchronous resource owner control of grants
• Enabling resource owner to monitor and manage grants from a “dashboard”
• Auditability of grants (consent) and PAT-authorized AS-RS interactions

• Work is well along on an UMA business model
• Modeling real-life data-sharing relationships and legal devices
• Technical artifacts are mapped to devices
• Goal: tear down artifacts and build up new ones in response to state changes

39

(Most) legal relationships in the business model

40

clientresource serverauthorization server

requesting partyresource owner

Resource Rights Administrator

Authorization Server Operator Client Operator

Delegates-seek-
authority-to

Licenses-perm-
getting-to

Delegates-perm-
authority-to Delegates-mgmt-to

Permits-knowing-
claims

Requesting Agent

Resource Server Operator

Licenses-perm-
granting-to

Licenses- perm-
getting-to

(Agency
Contract)

(Access
Contract)

UMA implications

41

…for the client

• Simpler next-step
handling at every
point

…for the RS

• Standardize
management of
protected
resources

…for the RO

• Control data
sharing/device
control

• Truly delegate
access to other
parties using
clients

…for the AS

• Offer
interoperable
authorization
services

• Don’t have to
touch data to
protect it

…for the RqP

• Seek access to a
protected
resource as
oneself

…for the client
operator

• Distinguish
identities of
resource owners
from mere users

…for the resource
server operator

• Externalize
authorization
while still owning
API/scopes

…for the resource
rights admin

• Manage sharing
on behalf of data
subjects, not just
for oneself

…for the
authorization

server operator

• Prove what
interactions took
place or didn’t

…for the
requesting agent

• Revoke access (or
request it) to
someone else’s
assets

What is the UMA WG up to?

• Julie Adam’s use-case report – describes how UMA can be applied to
complex patient centric data sharing, from Child to Adult
• UMA alignment to other specifications
• How UMA and UDAP can be used together
• How UMA can support the FAPI security profile
• How UMA could be more backwards compatible with Oauth 2

42

Join us!
Thank you!
Questions?
Alec Laws, Kantara Initiative UMA Work Group chair

@aleclaws | @UMAWG

https://kantara.atlassian.net/wiki/spaces/uma/

IIWXXXV | 15 Nov 2022

