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Management Summary 
 
This report aims to provide a comprehensive insight into privacy (and context) modelling approaches, 
namely into technical and formal approaches to privacy quantification. Majority of models available 
rely on context information – information that describes entity (typically user) behaviour while 
interacting with a system. Context information can be seen, e.g., in the form of log files containing 
information about all HTTP communications with a web server. Another example can be a log file 
containing search queries entered into a search engine. While this type of information is valuable for 
some profiling techniques that enable the system to serve customized content, it also forms a solid 
basis for retrieving sensitive information about individuals. Therefore special care has to be taken 
while analyzing and processing this data. 
 
Privacy/content models discussed in this deliverable aim to process the data to learn frequent 
behavioral patterns as well as to decide how sensitive information this data may contain. Metrics for 
privacy quantification then aim to measure the degree of privacy a protocol or a communication 
system can provide to its users. Another purpose of such quantification is to provide a metric for the 
(level of) privacy which users actually may expect with respect to their situation, e.g., considering 
their previous actions. 
 
Deliverable D13.1 and this deliverable 13.6 are now essential for the follow-up work of FIDIS WP13, 
where the planned deliverables are as follows: 

• Deliverable D13.8: Applicability of privacy models, where we plan to use some privacy 
modelling approaches in use-cases involving profiling, systems using different forms of 
identities, etc. The goal of that deliverable will be to review/illustrate the applicability of 
models from this deliverable D13.6, and this deliverable actually went few steps ahead in this 
way. 

• Deliverable D13.9: Estimating quality of identities that will extend our previous work by 
showing (if possible) how theoretical models may be used for real-world scenarios. The result 
should describe the ways to estimate quality of identities in some real-case scenarios, with the 
vision to involve some distinct technologies identified in other work of FIDIS, namely of 
WP3. 
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Chapter 1

Introduction

The aim of this deliverable is to provide a comprehensive insight into pri-
vacy (and context) modelling approaches, namely into technical and formal
approaches to privacy quantification. Majority of models available rely on
context information – information that describes entity (typically user) be-
haviour while interacting with a system. Context information can be seen,
e.g., in the form of log files containing information about all HTTP commu-
nications with a web server. Another example can be a log file containing
search queries entered into a search engine. On one hand, this type of infor-
mation is valuable for some profiling techniques that enable the system to
serve customized content. On the other hand, context information can be
considered as a solid basis for retrieving sensitive information about indi-
viduals, as is witnessed in FIDIS deliverables related to profiling. Therefore
special care has to be taken while analyzing and processing this data.

Privacy/content models discussed in this deliverable aim to process the data
to learn frequent behavioral patterns as well as to decide how sensitive infor-
mation this data may contain. Metrics for privacy quantification then aim
to measure the degree of privacy a protocol or a communication system can
provide to its users. Another purpose of such quantification is to provide
a metric for the (level of) privacy which users actually may expect with
respect to their situation, e.g., considering their previous actions.

In the second chapter we start with the description of some basic concepts
and terminology used in the field of privacy modelling and privacy quantifi-
cation. We discuss privacy as a complex concept with different meaning to
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different people and point out currently known threats. Four main privacy
properties – anonymity, pseudonymity, unlinkability and unobservability are
described according to Pfitzmann and Hansen definitions, and then discussed
from the Common criteria point of view.

Chapter 3 is dedicated to context information, its categorization and quality.
Context information is a critical source of knowledge for both the privacy
modelling and privacy quantification. The rest of this chapter deals with a
revisited view of Common criteria privacy properties, where the proposed
definitions allow to quantify all privacy properties in a probabilistic way.

Chapter 4 is organized as a survey of selected context information and user
behaviour modelling approaches. We start with context information models
– Freiburg Privacy Diamond, PATS (which is based on probabilistic def-
initions of four privacy properties), models based on set theory, directed
graphs, first-order logic and finally a variant of Object-Role modelling. Sec-
ond part of this chapter deals with behaviour modelling techniques. We
discuss global mixture model, maximum entropy model and hidden Markov
model. Data mining (specifically the cluster analysis) and its importance
(and the way it is used) in user behaviour modelling is shortly introduced
at the end of the chapter 4.

Chapter 5 presents existing metrics for privacy properties quantification
(anonymity, pseudonymity, unlinkability, unobservability). It starts with
formal methods that have been proposed for determination of the degree
of anonymity, namely “function views”. The following part addresses the
question of privacy in (statistical) databases with respect to possible risk
of entities’ re-identification and the degree of user’s anonymity provided in
systems like the DC net, mix-based systems or Crowds. Section 5.4 outlines
generalizations of the previous approaches and refers to the work which is
currently state of the art.
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Chapter 2

Concepts and Terminology

2.1 Privacy and Its Threats

Privacy is a complex and subjective concept with different meanings to dif-
ferent people, that depend on the context in which it is used. Solove pre-
sented in [Sol06] a taxonomy of privacy from the perspective of law, where
16 different types of privacy violation are defined. The author classifies the
identified privacy violations in four categories, which are:

Information Collection surveillance and interrogation.

Information Processing aggregation, identification, insecurity, secondary
use and exclusion.

Information dissemination breach of confidentiality, disclosure, expo-
sure, increased accessibility, blackmail,appropriation and distortion.

Invasion intrusion and decisional interference.

Technological measures to protect against privacy violations focus mostly
on preventing the unintended leakage of information; while other types of
violations fall out of the scope of technological systems and legal measures
are needed in order to prevent them. Technical systems can better protect
against the following particular privacy threats:
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Surveillance considering adversary capable of monitoring electronic trans-
actions, privacy-enhancing technologies aim to reduce the risk of surveil-
lance by concealing information about the content and circumstances
of electronic transactions from adversary. When users are able to keep
transaction contents confidential and to act anonymously, they protect
themselves against surveillance threats.

Interrogation the technical property the protects a user from being forced
to disclose information is called plausible deniability. Systems that
provide plausible deniability make it impossible for adversary to prove
that the user is concealing information.

Aggregation the property that prevents the aggregation of information as
related to each other or to a particular subject is unlinkability.

Identification Identification is connecting data to individuals. Anonymity,
unlinkability and confidentiality properties prevent this connection to
be revealed.

In order to preserve privacy in electronic applications, information must be
made unavailable to potential adversaries trying to identify, profile, or link
subjects with actions, attributes or other subjects. In the remaining of this
section, we present definitions of the main privacy properties that have been
subject of research, such as anonymity, unlinkability, unobservability, and
pseudonymity.

The quantification of these properties is achieved by the use of metrics.
Metrics allow for the comparison and evaluation of the level of privacy pro-
vided by different systems. In Chapter 5, we present the existing metrics
for quantification of privacy properties.

2.2 Pfitzmann-Hansen Terminology

Pfitzmann and Hansen [PH01] proposed in 2000 a set of working definitions
for anonymity, unlinkability, unobservability, and pseudonymity. These def-
initions have since been adopted in most of the anonymity literature. Their
authors continue releasing regular updates on the document addressing feed-
back from the research community. The latest versions of the document are

6



publicly available at http://dud.inf.tu-dresden.de/Anon_Terminology.
shtml.

2.2.1 Anonymity

There always has to be an appropriate set of subjects with potentially the
same attributes to enable anonymity of a subject. Anonymity is thus defined
as the state of being notidentifiable within a set of subjects, the anonymity
set.

The anonymity set is a set of all possible subjects. With respect to acting
entities, the anonymity set consists of the subjects who might cause an ac-
tion. With respect to addressees, the anonymity set consists of the subjects
who might be addressed. Both anonymity sets may be disjoint, be the same,
or they may overlap. The anonymity sets may vary over time.

According to the Pfitzmann-Hansen definition of anonymity, the subjects
who may be related to an anonymous transaction constitute the anonymity
set for that particular transaction. A subject carries on the transaction
anonymously if he cannot be distinguished (by an adversary1) from other
subjects. This definition of anonymity captures the probabilistic information
often obtained by adversaries trying to identify anonymous subjects.

2.2.2 Unlinkablity

The ISO15408:1999 defines unlinkability as follows:

”[Unlinkability] ensures that a user may make multiple uses of resources or
services without others being able to link these uses together. [. . . ] Unlink-
ability requires that users and/or subjects are unable to determine whether
the same user caused certain specific operations in the system.”

This notion is restricted to users, while it makes sense to generalize it to
arbitrary items within a given system (e.g., between users and services used
or between different uses of services).

1We shall use the terms of adversary and attacker as synonymous through this docu-
ment.
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Further we may differentiate between absolute unlinkability (as in the given
definition; i.e., ”no determination of a link between uses”) and relative un-
linkability (i.e., ”no change of knowledge about a link between uses”), where
relative unlinkability between arbitrary items could be defined as follows:

Unlinkability of two or more Items Of Interest (IOIs; e.g., subjects, mes-
sages, events, actions, . . . ) means that within the system (comprising these
and possibly other items), from the attacker’s perspective, these items of in-
terest are no more and no less related after his observation than they are
related concerning his a-priori knowledge.

This means that the probability of those items being related from the at-
tacker’s perspective stays the same before (a-priori knowledge) and after
the attacker’s observation (a-posteriori knowledge of the attacker). Roughly
speaking, unlinkability of items means that the ability of the attacker to
relate these items does not increase by observing the system.

2.2.3 Unobservability

In contrast to anonymity and unlinkability, where not the IOI, but only its
relationship to IDs or other IOIs is protected, for unobservability, the IOIs
are protected as such. Unobservability is the state of items of interest (IOIs)
being indistinguishable from any IOI (of the same type) at all.

This means that messages are not distinguishable from random noise. As
we had anonymity sets of subjects with respect to anonymity, we have unob-
servability sets of subjects with respect to unobservability. Sender unobserv-
ability then means that it is not noticeable whether any sender within the
unobservability set sends a message. Recipient unobservability then means
that it is not noticeable whether any recipient within the unobservability set
receives a message. Relationship unobservability then means that it is not
noticeable whether anything is sent out of a set of could-be senders to a set
of could-be recipients. In other words, it is not noticeable whether, within
the relationship unobservability set of all possible sender-recipient-pairs, a
message is exchanged in any relationship.
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2.2.4 Pseudonymity

Pseudonyms are identifiers of subjects (or sets of subjects when we generalize
it a bit). The subject which the pseudonym refers to is the holder of the
pseudonym.

Being pseudonymous is the state of using a pseudonym as ID

We assume that each pseudonym refers to exactly one holder, it is invari-
ant over time, being not transferred to other subjects. Specific kinds of
pseudonyms may extend this setting: A group pseudonym refers to a set
of holders, i.e. it may refer to multiple holders; a transferable pseudonym
can be transferred from one holder to another subject becoming its holder.
Such a group pseudonym may induce an anonymity set: Using the informa-
tion provided by the pseudonym only, an attacker cannot decide whether an
action was performed by a specific person within the set.

Defining the process of preparing for the use of pseudonyms, e.g., by es-
tablishing certain rules how to identify holders of pseudonyms, leads to the
more general notion of pseudonymity:

Pseudonymity is the use of pseudonyms as IDs

An advantage of pseudonymity technologies is that accountability for mis-
behaviour can be enforced. Also, persistent pseudonyms allow their owners
to build a pseudonymous reputation over time.

2.3 k-Anonymity Model

A model for anonymizing personal records in a database has been proposed
by Samarati and Sweeney in [SS98, Swe02a]. While anonymity at the com-
munication layer needs to be protected from traffic analysis attacks, ano-
nymized records may be vulnerable to re-identification. Re-identification is
the process of relating unique and specific entities to seemingly anonymous
data [Mal02], and as such, is an attack on the privacy of a data collection.

When a data holder wants to release anonymized personal records (e.g.,
for research purposes), it is not enough to remove obvious identifiers such
as name, address, or national ID number. Often, some subset of the data
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fields constitute a quasi-identifier. For example, ZIP code together with the
gender and the birth date may be enough to re-identify a substantial number
of anonymized data subjects.

A quasi-identifier is defined as: ”Let RT (A1, ..., An) be a table and QIRT

be the quasi-identifier associated with it. RT is said to satisfy k-anonymity
if and only if each sequence of values in RT [QIRT ] appears with at least k
occurrences in RT [QIRT ].”

The k-anonymity model assumes that there is some publicly available da-
tabase (e.g., the census or voter registration list) that contains certain at-
tributes for each of the data subjects included in it. When a second data set
is released, it is often the case that, even if identifiers have been removed,
quasi-identifiers can be found, such that re-identification (i.e., linking to
the publicly available database in order to find the name, address, etc.) is
possible.

k-anonymity is defined as follows [Swe02a, SS98]: ”Let RT (A1, . . . , An) be
a table and QIRT be the quasi-identifier associated with it. RT is said
to satisfy k-anonymity if and only if each sequence of values in RT [QIRT ]
appears with at least k occurrences in RT [QIRT ].”

In other words, a set of records is k-anonymous if there are at least k records
in the anonymity set for each possible quasi-identifier. The techniques pro-
posed to make a set of data k-anonymous are based on suppression and
generalization of data fields.

2.4 Common Criteria

Common Criteria [The99] is a standard used for security evaluations of IT
products and systems. It defines, among many other issues, privacy as one of
possible security properties of such systems. We first summarize the relevant
Common Criteria notions and concepts, and then introduce the concepts of
the privacy definition as defined in Common Criteria documents.

Target of Evaluation (TOE) – An IT product or system and its associ-
ated administrator and user guidance documentation that is the sub-
ject of an evaluation.

10



TOE Security Functions (TSF) – A set consisting of all hardware, soft-
ware, and firmware of the TOE that must be relied upon for the correct
enforcement of the TOE security policy.

TSF Scope of Control (TSC) – The set of interactions that can occur
with or within a TOE and are subject to the rules of the TOE security
policy.

Subject – An entity within the TSC that causes operations to be per-
formed.

Assets – Information or resources to be protected by the countermeasures
of a TOE.

Object – An entity within the TSC that contains or receives information
and upon which subjects perform operations.

User – Any entity (human user or external IT entity) outside the TOE that
interacts with the TOE.

TOE
TSC

TSF

resources
interactions

Users

ObjectsSubjects

Figure 2.1: Common Criteria model.

We can see (fig. 2.1) that user does not access objects directly but through
subjects – internal representation of herself inside TOE/TSC. This indirec-
tion is exploited later on for a definition of pseudonymity as we will see
later. Objects represent not only information but also services mediating
access to TOE’s resources. This abstract model does not directly cover com-
munication like in (remailer) mixes as it explicitly describes only relations
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between users/subjects and resources of target information system. How-
ever, it is not difficult to extend the proposed formal definitions of major
privacy concepts based on this model for communication models.

2.4.1 A simple example

Let us present a trivial example [MC04] that we use later in this chapter to
compare the formal models for privacy. The attacker attempts to determine
which payment cards are used by a certain person with a particular card –
she is interested in linking together all the cards of this person (identification
of the particular person is not part of the attacker’s goal at the moment).
We assume the attacker is able to collect payment receipts of shoppers from
the same house or the same company. For this subset of supermarket clients
we do not mind that a given receipt shows only a part of the payment card
number.

There are three payment cards (with numbers 11, 21, 25) used for three
actual shoppings (visits of the supermarket resulting in payments – A, B,
C), and there is also a set of typical baskets/shopping lists (l, m) in our
simplistic example.

The attacker has a precise (100%) knowledge about connections between
payment cards and shoppings, and an imprecise knowledge about classifi-
cation of individual shoppings into typical “consumer group” baskets. This
classification to “typical baskets” is usually done with some kind of a data-
mining algorithm over actual shopping lists. Note that one could obviously
achieve perfect knowledge should loyalty cards be used (and their numbers
on the receipts), introduction of this has no qualitative impact to this ex-
ample illustration in our model.

With just changing semantics, we may define a very similar example based on
users of chat services connecting from a given Internet cafe. The categories
would then be chat-room pseudonyms, chat sessions, and classification into
groups based on interest (content) and/or language, with the attacker’s goal
of identifying pseudonyms used by one user in different chat sessions.
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2.4.2 Privacy in the Common Criteria

Unobservability – This family ensures that a user may use a resource or
service without others, especially third parties, being able to observe
that the resource or service is being used. The protected asset in this
case can be information about other users’ communications, about ac-
cess to and use of a certain resource or service, etc. Several countries,
e.g. Germany, consider the assurance of communication unobserv-
ability as an essential part of the protection of constitutional rights.
Threats of malicious observations (e.g., through Trojan Horses) and
traffic analysis (by others than communicating parties) are best-known
examples.

Anonymity – This family ensures that a user may use a resource or service
without disclosing the user identity. The requirements for Anonymity
provide protection of the user identity. Anonymity is not intended to
protect the subject identity. Although it may be surprising to find
a service of this nature in a Trusted Computing Environment, pos-
sible applications include enquiries of a confidential nature to public
databases, etc. A protected asset is usually the identity of the request-
ing entity, but can also include information on the kind of requested
operation (and/or information) and aspects such as time and mode of
use. The relevant threats are: disclosure of identity or leakage of in-
formation leading to disclosure of identity – often described as “usage
profiling”.

Unlinkability – This family ensures that a user may make multiple uses
of resources or services without others being able to link these uses
together. The protected assets are of the same as in Anonymity. Rel-
evant threats can also be classed as “usage profiling”.

Pseudonymity – This family ensures that a user may use a resource or
service without disclosing its user identity, but can still be accountable
for that use. Possible applications are usage and charging for phone
services without disclosing identity, “anonymous” use of an electronic
payment, etc. In addition to the Anonymity services, Pseudonymity
provides methods for authorisation without identification (at all or
directly to the resource or service provider).
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Chapter 3

Context information

We can learn a lot about an individual based on his context and in a best case
can successfully predict possible future actions by combining several types
of context information in an efficient way. This can reveal some private data
about users and therefore privacy protection issues must be carefully taken
into consideration. A critical term here is user profile. If we have a good
profile of a user (and his behaviour) we can try to find and link together
similar profiles and, with some probability, identify a user – in this case we
do not know the real identification of a user, we just know that profiles in a
certain set share some similarities.

3.1 Context information

In order to develop context-aware systems, we need a mechanism for effective
context information processing and categorization. The aim is to develop a
model that represents user’s behaviour based on his past activity. Accuracy
of the model is a key feature for predictions of future actions that are based
on this model.

Context information is a type of information that is directly or indirectly
connected to an individual or arises from his activity. Typical examples
of user’s activity [MC04] (considering IT world only) can be the time when
user typically logs into a system, typed shell commands, visited IP addresses,
number of ssh connections, types of services used on a network, size of e-mail
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messages, search queries, length of sessions. . . By direct/indirect context in-
formation we mean e.g. information about friends and their interests (your
social network), current/past geographic locations, some regular activities,
health condition, etc.

Context information is associated with an individual and is a descriptive type
of information about a particular entity. It is clear that context information
is potentially sensitive and therefore it is necessary to have some privacy
protection mechanisms for users. Knowledge of this information may have
negative sociological, financial or material impact on you if it is abused by
an attacker. Global tendency is therefore to develop efficient mechanisms
for privacy protection (these are called Privacy Enhancing Technologies –
PET). User privacy can be enhanced e.g. by some obfuscation mechanisms
[WHI05] (see 4.3).

Our goal is to work with contextual information, try to find how much
private information can be derived from it and of course what are the possi-
bilities in preventing others from deriving such information (by using PET).
The second goal is to use this behaviour patterns to identify an individual
among the others – this issue is closely related to so-called linkability (see
3.2).

Another use of these user profiles can be for intrusion detection systems.
Profiles are built from normal usage data and deviations from these profiles
can indicate intrusions to the system [YD02].

Discovering valuable information in huge databases involves several phases
such as data preprocessing and cleaning (noise is removed); data transfor-
mation into some common structure; data mining techniques to identify
interesting patterns or correlations among parts of data; interpretation of
the results such as visualization or some kind of user friendly format.

3.1.1 Categorization of context information

There is a need for some context categorization, in [RDN05] two basic ap-
proaches are mentioned:

• Conceptual viewpoint – the type of context information we are working
with (types of services, time, types of messages, . . . ). Conceptual cat-
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egorization is a descriptive viewpoint of the contextual space (actions
and relations between them).

• Measurement viewpoint – the actual values for a particular user or an
individual (e.g. how often a service is being used, how many messages
were sent, in what time a user is likely to send a message, . . . ).

Another approach is to consider static and dynamic context as something
which is invariant (e.g. userID) and something with frequent changes (e.g.
location, types of services).

3.1.2 Quality of context information (QoCI)

Quality of context information is also of a great importance because the
quality of a given contextual information will significantly impact the deci-
sions made by the autonomous system. [RDN05] define QoCI in terms of
information quality parameters and information quality indicators:

An information quality parameter is a qualitative or subjective dimen-
sion by which a user evaluates context information quality.

An information quality indicator is a context information dimension
that provides objective information about the context.

An information quality attribute is a collective term including both
quality parameters and quality indicators.

An information quality indicator value is a measured characteristic of
the gathered and stored data. The information quality indicator source
may have an indicator value like from a sensor or user.

An information quality parameter value is the value determined for a
quality parameter (directly or indirectly) based on underlying quality
indicator values. Application-defined functions may be used to map
quality indicator values to quality parameters values.

Information quality requirements specify the indicators required to be
tagged, or otherwise documented for the information related to an
application or group of applications. If a context model includes this
then it is possible to make the context aware system more efficient and
effective.
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3.2 (Un)linkability

Unlinkability is closely related to user profiling and context modelling. The
definition from Common Criteria1 [Boa05] (see 2.4.2) is that unlinkability
ensures that a user may make multiple uses of resources or services without
others being able to link these uses together. PATS model (4.1.1.1) aims to
evaluate the attacker’s ability to link several entities together and helps to
learn (or infer) some “private” information about them. It is obvious that
if a system ensures unlinkability of its entities then some level of privacy
is ensured. Unlinkability is one of four properties (as defined in Common
Criteria) that must be satisfied in order to ensure privacy protection (these
other properties are anonymity, unobservability and pseudonymity).

This section is dedicated to current context information models, behavioral
models and other approaches for context information or behavioral data
processing.

3.3 Common Criteria revisited

Common Criteria privacy families are defined in an existential manner and
any formal definition of them has to tackle a number of ambiguities. It is
unrealistic to assume perfect/absolute privacy as demonstrated by several
anonymity metrics, based on anonymity sets (number of users able to use
a given resource/service in a given context) [PH01] or entropy assigned to
a projection between service and user/subject identities (uncertainty about
using a service) [SD02b].

Can we introduce more formal definition of privacy notions and use them to
define mutual relations? It is not easy, but the prospects of getting a clearer
picture of mutual relations between different privacy aspects/qualities are
encouraging.

Our proposal for the CC model privacy formalisation is based on the follow-
ing graphical representation (fig. 3.1). The set S represents observations of
uses of services or resources, PID is equivalent of subjects and ID stands for
users as defined in the CC. Sets US and UID are sets of all possible service
use observations and identities, respectively – not only those relevant for a

1http://www.commoncriteriaportal.org/
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given system. By stating with probability not significantly greater than in
the following definitions, we mean negligible difference (lower than ε) from
a specified value [Bel97]. Let A be any attacker with unbounded computing
power.

ID

u

UID

mi

US

P

ID

m

S

Figure 3.1: Schematics for the CC view of privacy.

A formal transcription of existential definitions of CC privacy families may
be as follows.

Unobservability – there is a space of encodings (US) from which some
elements are defined to encode use of service/resource (S). However,
A is not able to determine ∀s ∈ S with a probability significantly
greater than 1/2 whether a particular s ∈ S or s ∈ (US − S).

Anonymity – there is a probability mapping mu : S → UID. When

1. A knows the set ID – then ∀ s ∈ S, uID ∈ ID, she can only find
mu(s) = uID with a probability not significantly greater than
1/|ID|.

2. A does not know anything about ID (particular elements or size)
– then for ∀ uID ∈ UID, she cannot even guess whether uID ∈ ID
with a probability significantly greater than 1/2. (The probability
of finding mu(s) = uID would not be significantly greater than
0.)

Unlinkability – let us assume there is a function δ : m×S×S → [no, yes].
This function determines whether two service uses were invoked by the
same uID ∈ UID or not. Parameter m stands for a function that maps
service uses (S) into a set of identities UID (e.g., mu from fig. 3.1).
It is infeasible for A with any δ and any s1, s2 ∈ S, s1 6= s2 to deter-
mine whether m(s1) = m(s2) with a probability significantly greater
than 1/2.
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Pseudonymity – an unambiguous mapping mu(s) = u, ∀ s ∈ S, u ∈
PID exists and is known to A. We assume that there also exists a
mapping mi(u) = uID, ∀u ∈ PID, uID ∈ ID, but it is subject to
strict conditions and not known to A. When A

1. knows ID, she cannot determine correct uID with a probability
significantly greater than 1/|ID|;

2. does not know ID, she can only guess with a probability not
significantly greater than 1/2 whether uID ∈ ID.

These existential expressions can then be easily turned into probabilistic
ones that allow for expressing different qualitative levels of all these privacy
concepts/families. This can be done simply by changing the “not signifi-
cantly greater than” expression to “not greater than ∆”, where ∆ is the
given probability threshold.

3.3.1 Unlinkability – The Unlinkables

Unlinkability cannot be satisfied without other privacy families. It is now
understood [RI00a, RI00b] that the Common Criteria definition of unlink-
ability is not supporting some aspects of unlinkability in real systems, and
a Common Criteria modification proposal in this manner is currently sub-
mitted. We point the reader to the fact that when pseudonymity is flawed,
an attacker may obtain the ID of an actual user. The same holds when
anonymity is breached.

Moreover, we are convinced that unlinkability may be a property of other
privacy families. This comes straight from the formal unlinkability defi-
nition as stated above, where mapping m is the link binding the families
together. Unlinkability should ensure that the particular family (or rather
its implementation) does not contain side-channels (context information)
that could be exploited by an attacker. We have found, in this context,
two other meanings for unlinkability during our analysis. The first meaning
is expressed in the following definition of unlinkable pseudonymity. It says
that when a user employs two different pseudonyms, any A is not able to
connect these two pseudonyms together.

Unlinkable pseudonymity – As for the definition of pseudonymity above
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in part 3.3, and also for any s1, s2 ∈ S, where s1 6= s2,mu(s1) =
u1,mu(s2) = u2 (where u1, u2 ∈ PID)

1. if A knows ID – she cannot find (with a probability significantly
greater than 1/|ID|), whether mi(u1) = mi(u2), or

2. A does not know ID – she cannot guess with a probability sig-
nificantly greater than 1/4 whether mi(u1) × mi(u2) belong to
ID × ID, ID × ID, ID × ID, ID × ID, respectively. (ID =
UID − ID)

The second semantics is built on the assumption that knowledge of several
pieces of mutually related information is much more powerful than knowl-
edge of just one piece of such information. When compared with the previous
definition of unlinkable pseudonymity, the definition is now concerned with
a property ensuring that there is no increase in the probability of correct
identification of a given user when more information is available. The same
reasoning lies behind the following definition of unlinkable anonymity.

Unlinkable anonymity – As for the definition of anonymity above in part
3.3, and

1. If A knows ID – she cannot find with a probability significantly
greater than 1/|ID| such s1, s2 ∈ S, where s1 6= s2,mu(s1) =
mu(s2).

2. A does not know ID – with a probability not significantly greater
than 1/4 whether mu(s1)×mu(s2) belong to ID× ID, ID× ID,
ID × ID, ID × ID, respectively.

We can apply profiling when unlinkability is breached. Basically, unlinka-
bility should ensure that the particular family (or its implementation) does
not contain side-channels that could be used when several service invocations
appear.

The example: The figure 3.2 depicts how CC models our example from
part 2.4.1. It is obvious that there is no information about the context
information for the basket (chat) contents. This implies that an attacker will
not find any link between payment cards (pseudonyms) using this model,
even though the link/connection exists. This shows that CC do not address
contextual information.
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Figure 3.2: The example in the CC model.
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Chapter 4

Context information, user
behaviour and privacy
models

In this chapter we provide an overview of some existing context modelling ap-
proaches. Good context models are essential for building context-aware ap-
plications that intelligently adapt to different environments and user tasks.

4.1 Context information models

4.1.1 Freiburg Privacy Diamond

FPD is a semiformal anonymity (and partly also unlinkability) model by
A. Zugenmaier et al. [Zug03, ZKM03a]. The model originated from their
research in the area of security in mobile environments. The model is graph-
ically represented as a diamond with vertices User, Action, Device (alter-
natives for CC’s user, service, and subject), and Location (fig. 4.1). The
main reason for introducing location as a category here is probably due to
the overall focus of this model on mobile computing.

The anonymity of a user u performing an action a is breached when there
exists a connection between a and u. This may be achieved through any
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Figure 4.1: Freiburg Privacy Diamond.

path in the diamond model. Let us recap basic definitions of the FPD model:

1. Any element x has got a type type(x) ∈ {User, Action, Device,
Location}. Any two elements, such as x, y ∈ {e|type(e) = User ∨
Action ∨Device ∨ Location}, type(x) 6= type(y) are in a relation R if
the attacker has evidence connecting x and y.

2. An action is anonymous if UR = {u | type(u) = User ∧ (u, a) ∈ R}
is either empty or |UR| > t > 1, where t is an anonymity threshold
defining minimum acceptable size of anonymity set.

3. There is the transitivity rule saying that if (x, y) ∈ R and (y, z) ∈ R,
and type(x) 6= type(z), then x, z ∈ R.

4. The union of all initial relations known to an attacker A defines his
initial view V iewA.

5. The transitive closure V iewA of V iewA defines all the information an
attacker A may infer from her initial view.

The book [Zug03] also introduces three types of attacks with context infor-
mation.

• Recognition attack –A realises that several users (xi, type(xi) = User)
are in fact a single user.

• Linking attack – (x, y) ∈ R and (z, y) ∈ R are in the V iewA. When A
is able to find just one pair (y, xi) ∈ R then she will know that xi = x
and (z, x) ∈ R.
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• Intersection attack – A knows anonymity sets for several actions.
When she knows that a certain user is in all anonymity sets, she can
apply intersections to reduce size of anonymity set and eventually iden-
tify the user.

Finally, the model assigns probabilities to edges in order to express attacker’s
certainty about existence of particular relations with some simple rules how
to derive certainty for transitive relations.

The example: When attempting to model the example scenario (see
part 2.4.1) in the FPD model, the attacker ends up with three diamonds
for each service use (see fig 4.2). Here user and location represent domains
with no particular values as there is no such information available. The
attacker cannot find any intersection of the three diamonds – i.e., there is
no attack as defined by the FPD model theory. This is obvious since the
FPD model does not cover any other contextual information, only location
and device.

user

A

location location

user user

location

B C

252111

Figure 4.2: The example in the FPD model.

The FPD model only briefly mentions context information but does not
introduce any definition of it. The attacks based on context information do
not say how to perform them but only defines changes in V iewA when an
attack is completed.

Since the FPD model newly addressed the mobile computing environment,
as opposed to the old-fashioned “static” environment, location had a very
prominent role, as did the device to some extent. We have decided to treat
these as “ordinary” context information, i.e. as any other additional in-
formation about the system that can link a user and an action (or more
precisely, their identifiers).
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4.1.1.1 Context revisited – basics of the PATS (Privacy Across-
The-Street) model

We propose the following approach, inspired by the way location and device
(descriptors) are represented in FPD.

We suggest that all context information available to an attacker is repre-
sented as vertices in a graph, where edges are weighed with the probability
of the two incident vertices (contextual information, user and service IDs) to
be related/connected. Those connections may be between any two vertices,
and a path connecting a user ID and a service ID with a certain probability
value of the path suggests a link between the service use and the user ID
exists.

The graph reflects all knowledge of an attacker at a given time. Attackers
with different knowledge will build different graphs for a system as will likely
do the same attacker over some time.

What is not clear to us at the moment is the question whether pseudonyms
should be treated differently from other contexts or not. Clearly they are
more important in the model since their connection to users and actions
defines level of pseudonymity achieved in the system. Yet at the moment
we suggest all vertices to be treated equally, although we suspect that some
of them might be more equal than others.

4.1.1.2 Outline of the graph model

We denote the set of all vertices by V , the set of all identifiers of service
instances by S, and the set of all user IDs by ID. There are no edges between
any pair of elements of ID, only indirect paths through a linking context, and
the same applies to elements of S. There is also a function Wmax calculating
overall probability weight for a path in the graph, and therefore also a way to
determine the highest value Wmax(va, vb) for a path between va and vb. The
value of any path is calculated as a multiplication of the weights (w) of all its
individual edges, e.g. for the path P = v1, v2, . . . , vi of i vertices of the graph,
the value of the path P is W (v1, vi) = w(v1, v2)×w(v2, v3)× . . . w(vi−1, vi).

The following definitions also use ε to express negligible numbers (see [Bel97]
for details). Let A be any attacker with unbounded computing power.
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Unobservability (of service si) – a graph that A can build after observing
a system at a given time does not include si at all.

Unlinkability (between two nodes v1, v2, at the level ∆) – a graph that
A can build when observing the system at a given time has no path
connecting v1 with v2 with the overall probability greater than ∆, i.e.
provides W (v1, v2) ≤ 1/|V |+ ∆, where v1, v2 ∈ V .

W (v1, v2) ≤ 1
|V1.V2| + ∆, where v1 ∈ V1 and v2 ∈ V2.

Anonymity (of a user uID ∈ ID, at the level ∆) – then ∀ v ∈ V , when A

1. knows the set ID, she can only find a path from v to uID with the
weight not greater than 1/|ID| + ∆, such that Wmax(v, uID) ≤
1/|ID|+ ∆;

2. does not know anything about ID (particular elements or size),
she can only find a path from v to uID with the weight not greater
than ∆, i.e. Wmax(v, uID) ≤ ∆.

Pseudonymity (of a subject/pseudonym u ∈ PID, at the level ∆) – there
exists a path known to A from any s ∈ S to u with a satisfactory value
of Wmax(s, u), but for A there is no knowledge of an edge from u to
any uID ∈ ID such that when A

1. knows ID, the path from u to any uID has weight not greater
than 1/|ID|+ ∆, i.e. Wmax(u, uID) ≤ 1/|ID|+ ∆;

2. does not know anything about ID (particular elements or size),
the path from u to uID has weight not greater than ∆, i.e.
Wmax(u, uID) ≤ ∆.

There are several proposals for formal frameworks for anonymity [HO05,
HS04a] and unlinkability [SK03a]. Frameworks introduced in these papers
define typed systems with several defined categories like agents, type of
agents, messages [HS04a] or an inductive system based on modal logic of
knowledge [HO05]. We believe that our proposal would be more flexible
and would cover context information as an inherent part of the model thus
opening interesting questions.

The example: Let us express our example from part 2.4.1 in the PATS
model. Figure 4.3 shows how the context information about typical basket
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Figure 4.3: An example with a PATS model graph, where the first (upper)
basket/shopping list is denoted as l and the second one as m in the table
below.

contents is connected to actual instances of shoppings. As we are interested
in connections between payment cards (pseudonyms), we are looking for
paths (and their aggregate values) containing pairs of particular payment
cards. Let us try to find paths between card 11 and the other two cards.

Path Probabilities Aggregate
11 – A – l – B – 21 1 ∗ 0.9 ∗ 0.1 ∗ 1 0.09
11 – A – l – C – 25 1 ∗ 0.9 ∗ 0.8 ∗ 1 0.72
11 – A – m – B – 21 1 ∗ 0.1 ∗ 0.9 ∗ 1 0.09
11 – A – m – C – 25 1 ∗ 0.1 ∗ 0.2 ∗ 1 0.02
. . . . . . . . .

Table 4.1: Paths connecting payment card 11 with the other two cards

These are the shortest (and highest value) paths only. The attacker may
deduce (with a high probability) that payment cards 11 and 25 belong to
the same person, though she does not know who this person is. According
to our definitions, unlinkable pseudonymity is breached.

4.1.2 Categorization and modelling of quality in context in-
formation

[RDN05] provides a detailed context information categorization and dis-
cusses existing context models which will be briefly presented below. These
context models are based on the following methods: set theory, directed
graph, first-order logic. [?] also provides a good survey of context modelling
approaches.
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4.1.3 Set theory

[SAT+99] used set theory approach to describe context. Each context T is
described by a set of two-dimensional vectors where each vector h consist of
value v which describes the situations and p which indicates the certainty
that the user is currently in this situation.

Set theory describes context information in a schematic way but without
any indication of dependency relations.

4.1.4 Directed graph

[?] proposed an object-based context modelling (something like UML) in
which context information is structured around a set of entities, each de-
scribing a physical or conceptual object such as person or communication
channel. They use the form of a directed graph for representing context
in a way where entities and attribute types are nodes and associations be-
tween them are described as edges. This model is quite comprehensive and
also includes QoCI – Quality of Context Information 3.1.2 and dependency
relations but not with a high accuracy. Example of this approach is on fig-
ure 4.4. We think that this approach is very descriptive, but seems to be
impractical for finding behavioral patterns in very large datasets.

Figure 4.4: Example of the directed graph model [?]
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4.1.5 First-order logic

[RCRM02] proposed a context model (ConChat) based on first-order pred-
icate calculus and Boolean algebra. It covers wide variety of context in-
formation and supports couple of operations such as conjunction and dis-
junction of contexts as well as some quantifiers (∃ and ∀). It provides com-
plex first-order expressions and creation of various rules, theorems prov-
ing and queries evaluation. Context is represented with four arguments:
Context(<ContextType>, <Subject>, <Relater>, <Object>) where Con-
textType is the type of context; Subject is person, place or thing, with which
the context is concerned; Object is a value associated with the subject and
Relater is a comparison operator (such as =, < or >), verb, or preposition.
Example might be something like Context(Location, Chris, Entering,
Room 3231) or Context(People, Room 22, >=, 3).

This well defined modelling technique can be used in a specific field like
electronic chat (which is presented in the paper) but there is no possibility
to express relations between data and the model does not deal with Quality
of Context 3.1.2.

4.1.6 modelling context information with ORM

[HIM05] use a variant of Object-Role modelling (ORM), they call it Context
modelling Language (CML) to model context information for supporting the
development of context-aware applications. ORM approach does not address
some context modelling specific problems such as distinguishing information
from different sources, modelling temporal data and constraints, modelling
information quality, modelling information ownership. The proposed CML
addresses most of these problems. Authors present following extensions:

• source annotations, alternative fact types,

• temporal fact types,

• quality annotations,

• ownership statements,

• relational mapping
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• querying and interpretation.

They used CML to produce context models for several context-aware com-
munication applications. [HWMI05] present extensions to the model dis-
cussed above that address the challenges of assigning ownership to context
information and enable users to express privacy preferences for their own in-
formation and the conditions under which this information can be disclosed
to applications that request it.

4.2 User behaviour models

modelling user behaviour is an important issue for services (mainly web) that
want to offer some level of customization. Users of such a services build
their behavioral schemes that are used for personalization i.e. users will
get different search results based on their previous activity and behaviour.
Behaviour model is a probabilistic model describing which action the user
will probably perform in the future. We provide an overview on existing
modelling techniques with some basic description below.

4.2.1 Dynamic vs. static behavioral models

Dynamic models model some temporal variations in behaviour, which are
essential for differentiation between abnormal and normal behaviour. Static
models, on the other hand, do not explicitly model these temporal vari-
ations in behaviour. These models could be used for anomaly detection
[YD02]. Hidden Markov Models (HMM) are used for dynamic behavioral
models [HDSB03] and occurrence frequency distributions are used for static
behavioral models [YD02].

4.2.2 Global mixture model

The motivation for this model is that most of personalization algorithms
suffer from insufficient input data. It is impossible to learn reliable predictive
profiles if a user is seen only in one or two sessions. The approach proposed
by [MPG03] is to use a global mixture model to capture specific patterns
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of general behaviour of the users, and once the global model is learned, the
weight of each component is optimized for each known user individually. In
other words the global model is personalized with individual irregularities
of different users.

4.2.3 Maximum entropy model

This model and the one below are very often used for behaviour modelling
and for predicting user actions (mainly on web sites) in the future [HDSB03].
Maximum entropy model provides a framework to combine information from
different knowledge sources. Each knowledge source inserts a set of con-
straints on the combined model. The intersection of all the constraints con-
tains a set of probability functions satisfying all the conditions. Maximum
entropy principle chooses among these functions the one with the highest
information entropy. [MPG03] show that the maximum entropy model out-
performs Markov mixture models in recognizing complex user behaviour
patterns. The latter approach uses a global model which is then optimized
individually for each known user (see 4.2.2 and 4.2.4).

4.2.4 Hidden Markov Model

Hidden markov models (HMM) are stochastic models of sequential data.
Each HMM contain a finite number of unobservable states. State transi-
tions are governed by a stochastic process to form a Markov chain. At each
state, some state-dependent events can be observed. The emission probabil-
ities of these observable events are determined by a probability distribution,
one for each state. Fully-connected HMMs allow state transitions between
all state pairs [YD02]. To estimate the parameters of an HMM for modelling
normal behaviour, sequences of normal events ([YD02] works with shell com-
mands) collected from normal system usage are used as training examples
and using an expectation-maximization algorithm [DLR77] the maximum-
likelihood parameters are estimated.
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4.3 Privacy models

The need for privacy protection is obvious. It is possible for an eavesdrop-
per to infer private information about the user e.g. from his requests on
the Internet, web sites he accessed and linkage between these sites. There
are some privacy model proposals to deal with privacy issues mainly of web
sites users. [ESM02b] propose an approach to confuse the eavesdropper’s
automated programs with wrong data. Their model is based on the genera-
tion of faked transactions in various fields of interest in order to prevent the
eavesdropper from accurate derivation of the user profile. They also propose
a privacy measure that reflects the degree of confusion a system can cause to
the eavesdropper. This approach can also be used for hiding the information
interests of a homogenous group of users who share a local area network and
an access point to the Web [ESM02a].

Freiburg privacy diamond [ZKM03b] is a model proposed for security in
mobile environments. The model consists of four vertices User, Action,
Device, Location and edges between them. The goal of the attacker then is
to connect a User with an Action. For expressing attacker’s certainty about
relations in the model, edges can be assigned with some probabilities.

The above model is in [MC04] compared with a new proposed graph model
(PATS – Privacy Across The Street) which aim is to include contextual in-
formation for more precise description of entities. Vertices in the graph rep-
resent all available contextual information and edges (that are also weighted
with probabilities [CKM06, CKM05]) represent relation between vertices.

4.4 Data mining

When we discuss privacy issues, one should also mention data mining. Data
mining techniques are used for searching large volumes of data looking for
patterns and various data relationships. It encompasses various techniques
like association rules, cluster analysis (see 4.5), decision trees, neural net-
works, genetic algorithms and exploratory data analysis.

It is important to discuss how data mining can violate personal privacy.
“Proper” use of data mining techniques can lead to some private data in-
ference. [Tav99] provides a comparison between “traditional” retrieval of
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personal information and data mining approaches and [CM96] discuss se-
curity and privacy implications of data mining. [Bro00] discuss two views
on data mining – the desire for privacy by web users and the need for web
content providers to collect and utilize data about users – users may be
unaware how much identifying information can be disclosed; and (from the
point of web content providers) how privacy enhancing technologies (PET)
can substantially invalidate data mining results.

Data mining is widely used for discovering web users’ navigational character-
istics and patterns for better understanding of their needs and for providing
some levels of customization [BBA+00, BL00, DIC00].

4.5 Cluster analysis

Cluster analysis (as one of the data mining techniques) is a statistical tool
for grouping object into distinct sets. For our purposes, clustering can be
successfully used for pattern finding – mainly web users behavioral patterns
[CHM+00, Lek00]. There are three main properties characterizing this ap-
proach:

• Cluster analysis encompasses a number of different algorithms and
methods for grouping objects of similar kind into respective categories.

• Cluster analysis aims at sorting different objects into groups in a way
that the degree of association between two objects is maximal if they
belong to the same group and minimal otherwise.

• Cluster analysis can be used to discover structures in data without
providing an explanation or interpretation.

A good overview on various clustering data mining techniques can be found
in [Ber02].

4.5.1 Measuring distance between objects

There are several methods for measuring distance between objects. We
mention only the three most important ones [JW02].
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• Joining (Tree Clustering) is a method that joins objects together
into successively larger clusters, using some measure of similarity or
distance. Typical result of this type of clustering is the hierarchical
tree. This approach is efficiently used by [FSS00] for clustering web
usage sessions.

• Two–way Joining (Block Clustering) groups objects into pre-
clusters which are then treated as single cases. Standard hierarchical
clustering is then applied to the pre-clusters in the second step.

• k–Means Clustering forms exactly k clusters that are as distinct as
possible.

We need some criteria for differentiating objects and forming clusters. There
are metrics for both single and multi dimensional objects. The most common
way for multidimensional objects is Euclidean distance which is geometrical
distance between two points in multidimensional space:

distance(x, y) =
√∑

(xi − yi)2 (4.1)

Some other commonly used metrics are:

• Squared Euclidean in comparison to euclidean distance puts more
weight to isolated objects.

distance(x, y) =
∑

(xi − yi)2 (4.2)

• City-block (Manhattan) often provides similar results as euclidean dis-
tance but restricts the impact of outlying objects (outliers).

distance(x, y) =
∑

|xi − yi| (4.3)

• Chebychev is suitable for situations where we want to differentiate
objects that are different e.g. in only one dimension.

distance(x, y) = max |xi − yi| (4.4)
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4.5.2 Hierarchical clustering – measuring distance between
clusters

This method takes the matrix of distances and creates hierarchical sequence
of decompositions in a way that we start with n clusters where each of them
consist of only one object. Then we try to find two clusters whose distance
is minimal and put them together. We will end up with one large cluster.
To make this algorithm working we need to define how the distance between
two clusters is measured [JW02].

• Nearest neighbour – Distance between two clusters is the minimal dis-
tance between two objects where each of them is from different cluster.
Disadvantage of this approach is that far objects are often put to the
same cluster.

• Furthest neighbour – The dissimilarity between 2 groups is equal to the
greatest dissimilarity between a member of cluster i and a member of
cluster j. This method tends to produce very tight clusters of similar
cases.

• UPGMA (unweighted pair group method using averages). The distance
between two clusters is the mean of distances between all possible inter-
cluster pairs. UPGMA is generally preferred over nearest or furthest
neighbor methods since it is based on greater information.

4.6 Different types of similarity measures

It is appropriate to encompass more similarity measures to capture the users’
interests. We can get following information from a web log: the frequency
of a hyper-page usage, this lists of links an user selected, the elapsed time
between two links, and the order of pages accessed by individual web users.
Based on this information we can respective similarity measures. These are:
usage based, frequency based, viewing-time based and visiting-order based
[XZJL01, XZ01]. Each of them is slightly discussed in next four subsections.
For the next description we suppose that there is a given web site S, m users
U = u1, u2, . . . , um who accessed n different web pages P = p1, p2, . . . , pn in
some time interval. Usage value is associated to each page pi and user uj .
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This value is denoted as use(pi, uj), and defined as

use(pi, uj) =

1 if pi is accessed by uj ,

0 otherwise.

This value can be computed from the access logs of the site.

4.6.1 Usage based measure

This similarity is measured by the number of common pages that the users
accessed within a specific period of time (we are interested in what pages
did the user accessed but not how frequent). The measure is defined by

Sim1(ui, uj) =
∑

k (use(pk, ui) · use(pk, uj))√∑
k (use(pk, ui)) ·

∑
k (use(pk, uj))

(4.5)

where
∑

k use(pk, ui) is the total number of pages that were accessed by
user ui and

∑
k use(pk, ui) ·

∑
k use(pk, uj) is the number of common pages

accessed by both ui and uj . If two users accessed same pages (exactly), their
similarity will be 1 [XZJL01, XZ01].

4.6.2 Frequency based measure

We can express the similarity by counting the number of times each user
accessed separate pages at all sites. The measure is defined by

Sim2(ui, uj) =
∑

k

∑
s (accs(pk, ui) · accs(pk, uj))√∑

k

∑
s (accs(pk, ui))2 ·

∑
k

∑
s (accs(pk, uj))2

(4.6)

where accs(pk, ui) is the total number of times that a user ui accessed the
page pk at site s [XZJL01, XZ01].

4.6.3 Viewing-time based measure

Another way of expressing the similarity is by taking into account the actual
time the users spent on viewing each web page. t(pk, uj) denotes the time
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the user uj spent on viewing page pk (t(pk, uj) = 0 if uj did not access page
pk). The similarity between users is then expressed by

Sim3(ui, uj) =
∑

k (t(pk, ui) · t(pk, uj))√∑
k (t(pk, ui))2 ·

∑
k (t(pk, uj))2

(4.7)

where
∑

k (t(pk, ui))2 is the square sum of the time the user ui spent on
viewing pages at the site, and

∑
k (t(pk, ui) · t(pk, uj)) is the inner-product

over time spent on viewing the common pages by users ui and uj . Even if the
accessed pages are the same for two users, their similarity might be less than
1 due to different amount of time they spent on the pages [XZJL01, XZ01].

4.6.4 Visiting-order based measure

Last measure is based on visiting order and r-hop navigation paths Q =
q1, q2, . . . , qr. The similarity between path Qi and Qj for user i and j,
respectively is then computed using the natural angle (i.e. cos) [XZJL01,
XZ01].

Authors then use a clustering algorithm to differentiate users into distinct
groups. This is based on one of the similarity measure described above. The
clustering techniques and algorithms are described in section 4.5.
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Chapter 5

Metrics

In general, designing reasonable metrics for privacy quantification is a mul-
tidisciplinary approach, as pointed out in previous chapters. This chapter
focuses on technical and formal approaches. These approaches can be dis-
tinguished depending on purposes or use-cases, available data, and the way
results can be interpreted.

The purpose of a privacy metric can be to measure the degree of privacy
which a protocol or a communication system can provide to its users. An-
other purpose can be to provide a metric for the privacy which a user actually
may expect with respect to her situation, that is, for instance, her previous
actions.

Data can be available as persistent data, maybe organized in a database.
There are lots of cases in which organizations carry out so-called anonymous
surveys. If anonymity is understood as cutting off the name and address
only, it is hard to estimate whether the remaining attributes are not sufficient
to re-identify individuals. Privacy metrics help to assess the significance of
single attributes with respect to re-identification.

Another possible data source can be a set of observations. In contrast to a
database, such a set of observations covers actions or events which occurred
in a network over time. Observations do not necessarily need to be complete
with respect to these actions or events. However, the more complete the
observations are the better can privacy be assessed.
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The results of the metrics can be distinguished into possibilistic and proba-
bilistic measures, and additionally in worst-case and average-case approaches.
Worst-case approaches may be too strict in some cases. In fact, a system
which provides no anonymity in the worst case may work well in the ma-
jority of other cases. However, the opposite is also a flaw of average-case
approaches, since a system may provide appropriate anonymity in average,
while still failing in important situations.

Possibilistic measures deal with anonymity sets directly. If subjects belong
to the set, they are considered to be anonymous. The greater the set appears
for an adversary the greater is the anonymity of subjects within the set. This
leads to discrete results, however, possibilistic measures restrict the model
to exactly one view of the world. Probabilistic measures, in contrast, deal
with entropies, which are borrowed from information theory. The entropy of
an observed attribute value, conditional to the adversary’s prior knowledge,
yields the degree of information which an adversary is able to gain from her
observation. Thus, the entropy can also be used to estimate the size of the
anonymity set which remains after the adversary’s observation.

In the course of different traditions, several approaches have been developed
for privacy metrics. In this chapter, we describe approaches in the field of
formal methods (Section 5.1), surveys and statistical databases (Section 5.2),
and data-flow analysis in networks (Section 5.3). In Section 5.4, we outline
generalizations of the previous approaches and refer to work which is cur-
rently state of the art.

5.1 Formal Methods

There have been several proposals for analyzing anonymity properties in a
formal manner. First of all, these approaches measure the degree of ano-
nymity as in discrete values, that is either (a flavor of) anonymity is pre-
served or not. For most approaches, the authors state that probabilistic
enhancements would be possible. In this section, however, we focus on the
possibilistic foundations without any enhancements. In these approaches,
the determination of the degree of anonymity is done by so-called function
views which will be described first or by using a semantic characterization
of anonymity in formal languages. The latter will only be outlined in this
section.
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5.1.1 Function Views

For specification of information-hiding properties, Hughes and Shmatikov
utilize the concept of function views [HS04b]. Supposed, the capability of
an adversary to obtain data is modeled by functions. For instance, a function
s : M → A assigns a sender (from a set of subjects A) to a conversation
(from a set of conversations M). Then, information-hiding properties can
be expressed in a straight-forward manner by restricting the adversary’s
knowledge about function s. Hughes and Shmatikov point out that it is
sufficient for information-hiding to restrict three properties of functions, that
is the graph, the image, and the kernel. These restrictions determine the
view which an adversary has on the function.

The graph of a function f : A → B is the corresponding relation graph f ⊆
A × B which consists right of these tuples (a, b) for which f(a) = b holds
with a ∈ A and b ∈ B. That is

graph f =
{
(a, b)

∣∣ f(a) = b
}

(5.1)

For instance, for

f(x) =


1 for x = 1
3 for x = 2
3 for x = 3

(5.2)

we achieve graph f = {(1, 1), (2, 3), (3, 3)}.

The image of a function f : A → B consists of these elements b ∈ B for which
there is an a ∈ A such that f(a) = b. Note that there may be elements b′ ∈ B
for which there is no a ∈ A that satisfies f(a) = b. Formally, we denote

im f =
{
f(a)

∣∣ a ∈ A
}

(5.3)

Continuing the example of Equation 5.2, we achieve im f = {1, 3}.

The kernel of a function f : A → B consists of equivalence classes. These
equivalence classes consists of all elements a ∈ A for which f maps to one
and the same b ∈ B. That is,

〈a, a′〉 ∈ ker f ⇐⇒ f(a) = f(a′) with a, a′ ∈ A (5.4)

Continuing the example of Equation 5.2, we achieve ker f = {{1}, {2, 3}}.
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A function view can then be denoted as a triple 〈F, I, K〉 where F ⊆ A×B
describes the knowledge about the graph, I ⊆ B describes the knowledge
about the image, and K is the equivalence relation on A which describes
the knowledge about the kernel of f . In order to let the view 〈F, I, K〉 be
restrictive with respect to f , the following constraints need to be satisfied:

• F ⊇ f , that is the graph of the view leads to the same or more uncer-
tainty about the actual relation of inputs and outputs of f .

• I ⊆ im f , that is the image of the view supports all or less many
different outcomes of f .

• K ⊆ ker f , that is the kernel of the view is still a sound part of the
kernel of f , however, the outcome of f depends on the same or less
many equivalence classes of input values.

Using the notion of function views, function constraints, or flavors of opaque-
ness [HS04b], can be systematically expressed in terms of first-order logic.
However, Hughes and Shmatikov also point out that F , I, and K are not
independent from each other.

Suppose, for instance, the function s : M → A maps conversations (ele-
ments of M) to senders (elements of A). Kernel opaqueness, that is two
arbitrary inputs of f can necessarily be mapped to different outcomes, leads
to untraceability. An adversary is then not able to relate two conversa-
tions unambiguously to each other, even if they have been sent by the same
sender.

Hughes and Shmatikov furthermore show how function views can mediate
between system specification which are commonly done in process algebras
and (information-hiding) property specifications which are commonly done
in some logic.

5.1.2 Formal Languages and Semantics

Halpern and O’Neill [HO03] address the topic of mediation and show that,
though elegant and useful, function views are not necessary for mediation,
since all the specification can be done by semantic characterizations.
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Schneider and Sidiropoulos [SS96] use the modelling language CSP (Com-
municating Sequential Processes) for a process algebraic formalisation of
anonymity. Syverson and Stubblebine describe anonymity properties in for-
mal languages based on group principals [SS99]. They describe the infor-
mation which is to be protected and the purpose of the protection, i.e. the
degree of anonymity.

In a former approach [Shm04], Shmatikov formalizes the Crowds model [RR98]
of Reiter and Rubin by means of Markov chains and describes the degrees
of anonymity of [RR98] in temporal probabilistic logic formulas.

5.2 Persistent Data & Statistical Databases

The question of privacy in databases of personal data records was tackled
in large-scale when it came to the census discussion in (Western) Germany
during the 1980s. Fischer-Hübner [FH87, FH01] points out that such data
records consist of three kinds of data, that is identity data, demographic
data, and analysis data. With identity data, it is possible to identify dis-
tinct persons, and thus, this data is obviously privacy-relevant. This could
be, for instance, name or address. However, Fischer-Hübner also shows that
the common assumption at that time, that truncating identity data would
lead to anonymous data records, does not hold. It is rather obvious that
combinations of demographic data, such as sex, nationality, education, reli-
gion, and marital status, can be used to re-identify people. Therefore, these
items are also privacy-relevant.

There have been several complementary approaches [Rub93, BKP90], one of
the most famous in the privacy-community has been proposed by Sweeney.
In [Swe02b], she points out that classical access control approaches fail to
protect against data disclosure. This particularly is the case, if protected
data is not subject of the release process, but results from the derivation
of legitimately released data. Therefore, at least unambiguous relations
between released data and supplementary knowledge must be avoided.

The actual threat which arises from database contents depends on the
recorded attributes and the frequency distribution of their values. Fischer-
Hübner proposes a probabilistic approach for assessing the risk of re-identifi-
cation, whereas the k-anonymity approach proposed by Sweeney is possibilis-
tic. Therefore, k-anonymity is only applicable for worst-case considerations,
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whereas Fischer-Hübner’s approach yields average-case results.

Both approaches require quite strong assumptions. The data-holder (or
whoever wants to assess the threats of re-identification) has to determine the
quasi-identifier1 properly, in any case. The assumption is that she does so.
Furthermore this person needs access to all databases which could be used
for identification. In case of public databases, this requirement is satisfied.
If the adversary uses supplementary data which is not publicly available,
then the quasi-identifier cannot be chosen appropriately.

5.2.1 Risk of Re-identification

The approach of Fischer-Hübner [FH87, FH01] can be understood as a met-
ric of uniqueness of attribute values (or combinations) within a database.
Her approach is based on Shannon entropies [Sha48].

Suppose that there is a database table with n records. Each record consists
of values for a set of discrete attributes, including X1, . . . , Xm.

Fischer-Hübner defines the risk of re-identification r(X1, . . . , Xm) as the
ratio between the average number of value combinations nvc(X1, . . . , Xm)
that can be used for re-identification and n.

r
(
X1, . . . , Xm

)
:= min

(
1,

nvc(X1, . . . , Xm)
n

)
(5.5)

We need to enforce 1 as the upper bound, since the ratio can in fact be
greater than 1. This happens, if the number of such value combinations is
greater than the number of records. However, a risk greater than one has
no useful interpretation.

The average number of value combinations which can be used for re-identi-
fication is defined by means of the entropy H(X1, . . . , Xm) of all involved
attributes X1, . . . , Xm. That entropy yields the information which can be
obtained from the corresponding values to these attributes. The entropy’s
dimension is Bit, thus, the average number of value combinations which
contribute information is 2, that is the number of states of a single Bit, to
the power of the entropy.

nvc(X1, . . . , Xm) := 2H(X1,...,Xm) (5.6)
1The quasi-identifier is a set of database attributes which unambiguously identifies a

subject within the database.
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The greater the entropy is, indeed, the greater is the number of value com-
binations which can be used for re-identification. In fact, the entropy is the
greater the more the frequency distribution of all involved attribute values
converges to uniform distribution. Furthermore, it is the smaller the more
uneven this frequency distribution is. In addition, the entropy depends also
on the number of involved attributes. The greater this number is the greater
is the entropy and vice versa.

Strictly speaking, the joint entropy H(X1, . . . , Xm) is defined as a sum
of conditional entropies. We do not elaborate the details in this chapter,
however, more detailed background can be found in [Sha48]. By means of
conditional entropies, Fisher-Hübner’s approach can also take dependencies
between different attributes into account.

5.2.2 k-Anonymity

Sweeney [Swe02b] proposes a possibilistic approach. It can be used to assess
threats of re-identification which arise from linking attributes which are
shared between different databases.

Supposed, two database tables overlap in a subset of such a quasi-identifier,
then we can count the occurrences of records with the same values in this
attribute subset. The actual measure which is provided by k-anonymity is
k which denotes the smallest count of these occurrences.

The records from both databases cannot unambiguously be linked as long
as k is greater than 1. The reverse, however, does not generally hold, since
k = 1 only states that at least one record can be linked. In particular, it
makes no difference with respect to k, if just one or many more records can
be linked. The greater k is, however, the greater is the anonymity assumed
to be.

5.3 Data-flow in Networks

There are several different approaches for systems and protocols which were
meant to preserve the user’s anonymity, for instance, the DC net, mix-based
approaches, or Crowds. The efficiency of these approaches with respect to
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required resources can be assessed by means of traditional analysis methods.
Assessing the anonymity which they provide, however, turned out to be a
more severe problem. In this section, we focus on approaches which tackle
this topic.

Dı́az et al. proposed a measurement [DSCP02] which assesses the sender
anonymity that can be provided by a communication system. A similar ap-
proach has independently been proposed by Serjantov and Danezis [SD02a,
Dan03] at around the same time. The difference between both approaches is
mainly that Dı́az et al. normalize the entropy, whereas Serjantov and Danezis
use the entropy measure without normalization. In [Dan03], Danezis dis-
cusses the pros and cons of normalization with respect to these measure-
ments. His conclusion is basically that, by normalization, important infor-
mation about the measured anonymity gets lost, particularly the average
size of the corresponding anonymity set. Dı́az et al. argue, however, for a
quality measurement which is independent from anonymity set size and only
relies on the distribution of probabilities. That is, the probabilities of users
for being the sender of a particular message.

The foundation of both approaches is Shannon’s information theory [Sha48].
Assuming that adversaries are able to carry out observations and assign cor-
responding probabilities to possible senders of a message, there are various
kinds of observations that an adversary may use, for instance results from
traffic analysis, timing attacks, message length attacks, or generally informa-
tion leaks of the communication system. By means of assigning probabilities,
adversaries are able to distinguish possible senders of a message much bet-
ter than by assigning them to anonymity sets. Entropy or the information
which is contained in a given distribution of probabilities, is used to assess
the information that the adversary was able to obtain. From the point of
view of a user, entropy is used to assess the anonymity of the user with
respect to the adversary’s observation.

Dı́az et al. define the information leak of the adversary’s attack as the dif-
ference between maximum entropy of the system and the actual entropy of
the system after the adversary’s observation. Thus, by denoting the max-
imum possible entropy2 as HM and the entropy after an observation as
H(X), the information which the adversary has learned can be assessed by
H(X)/HM . Here, X is a discrete random variable with probability mass
function pi = Pr(X = i), where i is an index over all users in the system.

2Not to confuse with max-entropy.
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The entropies H(X) and HM can be calculated as shown in Equation 5.7,
the latter one by means of the number of all users in the system n.

HM = log2(n) H(X) = −
n∑

i=1

pi log2(pi) (5.7)

The degree of anonymity, denoted as d, is then defined as the difference be-
tween the state of perfect anonymity and the adversary’s gain of information.
As mentioned, this degree is normalized with respect to HM :

d = 1− HM −H(X)
HM

=
H(X)
HM

(5.8)

This degree is a value between 0 and 1, where 0 denotes no preserved anony-
mity and 1 denotes perfect anonymity with respect to the system. That is,
the adversary is able to identify the user as sender of the message, in case of
d = 0. The other extreme value d = 1 would mean that the adversary is just
able to guess the sender, since all users appear evenly suspicious for having
sent the message. This case is similar to an anonymity set which contains
basically all users. And otherwise, that is d is neither 0 nor 1, it holds, the
greater d is the greater is the average anonymity.

With this normalization, it is possible to assess arbitrary communication
systems with respect to a given lower bound of anonymity. Dı́az et al. point
out, however, that such a lower bound depends very much on the system
requirements and can hardly be suggested, generally.

Serjantov and Danezis [SD02a, Dan03] use H(X) without any normalization
to assess the anonymity. This yields the average set size of a corresponding
anonymity set and, therefore, a measure about the actual effort which an
adversary has to take into account for identifying a user as sender of a
message. This average size k of the anonymity set can be calculated by
means of the dimension of the entropy H(X) which is Bit:

k = 2H(X) (5.9)

These approaches can easily be adapted for recipient anonymity or any other
action.
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5.4 Generalizations

Both measurements which have been described in the previous section are
useful to quantify the effort of an adversary to compromise all messages,
that is to assign the messages to users. Tóth et al. refer to this quantifi-
cation as global measure [THV04a] and point out that it is of little use
for users to quantify their particular anonymity. They refer to the latter
quantification as local aspect of anonymity and prove that different prob-
ability distributions which provide very different local anonymity lead to
the same level of anonymity with respect to global measurements. Further-
more, they show that for a given degree of anonymity there is a always a
corresponding probability distribution which is not desirable for all users.
Thus, Tóth et al. conclude, global measures do not provide a quantification
of anonymity with respect to local aspects.

5.4.1 Local Anonymity

In order to overcome the shortcomings, they propose [THV04a] an upper
bound Θ and suppose that an adversary is successful, if she can assign a
message to a user with probability greater than this upper bound. Thus, a
system provides sender anonymity as long as for all received messages β and
all senders s holds that the probability for s being the sender of β is lower
or equal Θ, formally

∀β.∀s.
(
Pβ,s ≤ Θ

)
(5.10)

Dually, this can be formalized for recipient anonymity.

This is a generalization of global measures, since the (global) degree of ano-
nymity d can be assessed as well as H(X) by using Θ:

d ≥ − logn Θ where n is the number of senders (5.11)
H(X) ≥ − log2 Θ (5.12)

5.4.2 Towards Arbitrary Attributes

The ideas of this section mainly reflect the current work of Sebastian Clauß
and will be elaborated within a greater context in his PhD thesis.
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5.4.2.1 Modelling the Observer’s Knowledge Base

By observing actions, an observer gets a limited insight into user’s personal
information (hence we address it as a set of attributes) and into relations be-
tween different attribute values. The observer can collect this information,
and may conduct any desired statistical analysis on them. With a grow-
ing number of observations, the information on probability distributions of
the digital identities gets more exact3. Clauß defines the knowledge of an
attacker, which he gained by observations, in form of the observer state:

Definition 1 (Observer State) The State ZX of an observer X is a triple
(I, h, g), where:

• I is the set of all digital identities possible.

I = A1 ×A2 × · · · × An

• h : I 7→ IR is a function, which assigns a probability to each digital
identity, i.e., (∀i ∈ I. 0 5 h(i) 5 1)

• g is the number of observations leading to this state.

• the sum of all probabilities is 1.∑
(I)

h(i) = 1

h(i) denotes the probability that within the set I of all possible identities,
the identity i is observed by the attacker.

When the attacker observes a user’s action, the probability of the identities
matching the observation (i.e., the suspects with respect to the observation)
is increased, whereas the probability of all other identities is decreased. After
defining observations, Clauß specifies a method for matching identities and
observations.

Definition 2 (Observation) An observation is a (possibly incomplete)
bundle of attribute values. Such a bundle contains at most one value per

3“exact” here means exact with respect to the observation. Observations may never-
theless yield incorrect information.
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attribute. The set B of all possible observations is the cross product of all
attributes with an additional element “not observed” ⊥.

B = (A1 ∪ {⊥})× (A2 ∪ {⊥})× · · · × (An ∪ {⊥})

Intuitively, this means that during actions a user discloses attribute values.
The observer observes this values and gets a more and more refined view on
the digital identities and by that on the users.

Within the set of all possible digital identities, an observer can separate
suspect digital identities with respect to an observation from non-suspect
digital identities. The set of suspects related to an observation can be defined
as follows:

Definition 3 (Suspects) The set of suspects Vb related to an observation
b = (x1, .., xn) contains all digital identities i = (x′1, .., x

′
n), whose attribute

values are either equal to attribute values of b or are not contained in b. 4

Vb = {i|xk ∈ {x′k,⊥}, k = 1, .., n} (5.13)

As stated above, the observer learns by observations. The following defini-
tion formalises this learning process:

Definition 4 (Observer State Update) Let b ∈ B be an observation and
Z a set of observer states. An observer state update δ : Z × B → Z
constructs a new observer state from a given state and an observation.

These definitions are a framework for formalising concrete observations and
statistical analysis based on digital identities. In order not to restrict this
model to passive (observing only) attackers, it is intentionally not defined
how an observation is done. So, an attacker may observe messages, but may
also actively insert or fake messages in order to observe users’ reactions.

Based on the above definitions, a statistical observer model is defined as
follows:

4The matching function “equality” used here is a simple example. This makes only
sense, if attribute values are discrete and not related to each other. If this is not the
case, e.g., if measuring faults for originally continuous attribute values need to be taken
into account, other matching functions should be used which reflect such properties of
attributes.
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Definition 5 (Statistical Observer Model) A statistical observer mo-
del of an observer X comprises a set I of digital identities, a set of obser-
vations B, a set ZX of observer states and a function δ, which derives new
observer states from previous states and observations.

The statistical observer model specifies the observer’s knowledge in form
of statistics about digital identities together with a method for aggregating
newly gained knowledge. This is an abstract definition, as it leaves open how
the aggregation of new observations actually influences the probabilities of
digital identities.

5.4.2.2 Concrete Statistical Observer Model

Concrete Observer State Update Method In order to actually ag-
gregate knowledge about entities within the system, we need to define a
concrete observer state update method, i.e. given an observer state, how ex-
actly the probabilities of the digital identities change upon an observation5.

Thereby, the major goal is that, by observations, the frequency distributions
of attribute values within the observer state shall converge to the actual
frequency distributions within the system. Further, the model shall reflect
observed relations between values of different attributes.

Given a set of digital identities I and the set of all observations possible B,
the concrete observer model is defined in an inductive way.

First, the initial state is defined, in which the attacker did not do any ob-
servations. For the initial state Z0 = (I, h, g) it shall hold that g = 0 and h
is uniformly distributed, i.e. (∀i ∈ I.h(i) = 1

|I|).

Now we specify how an observation actually changes the probabilities of
the digital identities. A function δ : Z × B → Z derives state Zk+1 =
(I, hk+1, gk+1) from the previous state Zk = (I, hk, gk) and an observation
b ∈ B as follows:

5The update method described here is an example, in order to show a possibility how
observations can be aggregated in a meaningful way into a statistical observer model.
There may exist other concrete models.
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hk+1 : i 7→ hk(i) ∗ gk + x

gk + 1
(5.14)

x =
{ 1

|Vb| iff i ∈ Vb

0 otherwise
gk+1 = gk + 1 (5.15)

This intuitively means, that first each observation is weighted by 1. Then,
this weight is divided by the number of suspects of this observation. By
doing that, more significant observations (i.e., observations containing values
of more attributes) get a bigger influence on the probability of the suspect
identities than less significant ones. Further, the weight of the observation is
set into relation to the number of observations already aggregated, so that
every observation already aggregated has the same overall influence on the
probabilities.

Example: Let a model contain three attributes with two values each. Within
this model, at most eight digital identities can be distinguished. Shown as
a cube, each corner represents a digital identity (see Figure 5.1). The figure
shows how the observer state changes by an observation b = (0, 0,⊥).
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Figure 5.1: Suspects and non-suspects relative to an observation b

♦

In fact, the observer model defined above sums up relative frequencies. With
a growing number of observations, it can be assumed that the relative fre-
quencies converge to probabilities. By induction over g, it can be shown,
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that function h always has the properties of a probability distribution, i.e.,∑
(i∈I) h(i) = 1 and h(i) is not negative.

Lemma 6 The sum of all probabilities h(i) of any single attacker state Z =
(I, h, g) is 1. ∑

(i∈I)

h(i) = 1

Proof: by induction over g.

�

Lemma 7 Function h(i) is not negative.

Proof: by induction over g. �

Corollary 8 The model of the observer knowledge base is coherent.

Proof: We need to show, that ∀i ∈ I.(0 ≤ h(i) ≤ 1) holds for all possible
states. This follows directly from Lemmas 6 and 7. �

Merging Multiple Observer States In the general case, it is always
possible to collect observations from different sources of information, and
aggregate them within a single observer state. So, partial information of
different sources can be merged.

A special case for merging is the situation that two observers use the same set
of attributes and values, i.e. their model bases on the same identities. In this
case two observer states can be aggregated without the need to add every
single observation of one state to the other. So, observer states of different
sources of information can easily be aggregated into a general state.

Definition 9 (State Aggregation) Two states ZA = (I, hA, gA) and
ZB = (I, hB, gB) based on the same set of digital identities are aggregated
to a new state ZA ∪ ZB = (I, hC , gC) as follows:

gC = gA + gB (5.16)

hC : i 7→ gAhA(i) + gBhB(i)
gC

(5.17)
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Figure 5.2: Aggregation of two observer states

Example: In Figure 5.2 aggregation of observer states is shown.

♦

In the following, we prove correctness of this aggregation. For doing this,
we first need a definition of equal observer states.

Definition 10 (Equal observer states) Two observer states
ZA = (IA, hA, gA) and ZB = (IB, hB, gB) are equal in case IA = IB,
hA = hB and gA = gB.

Further, we need the following lemma:

Lemma 11 (Order of observations) Let Z be an arbitrary observer state
and b1, b2 observations. The order of the aggregation of these observations
into Z does not influence the resulting state.

Proof: Aggregation of additional observations does not change the set of
identities within the observer state. As the number of observations added is
the same for all orders, g is equal in all possibly resulting states. Finally, we
need to show that the result of function h does not change for all possible
orders of aggregation. Based on the concrete observer state update method
described in 5.4.2.2 the following holds:

h(i)g+x1

g+1 (g + 1) + x2

g + 2
=

h(i)g+x2

g+1 (g + 1) + x1

g + 2

Where x1 only depends on b1, and x2 only depends on b2. �
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Corollary 12 Let A and B be sequences of observations from the same
set of observations. Let ZA,ZB be states derived from these observations.
Now, let ZC be the state resulting from first incorporating A and later on
B. Under these conditions it holds that:

ZC = ZA ∪ ZB

Proof: This can be shown by induction on g using Lemma 11. �

In Corollary 12 no statement is made about the nature of the observations.
So, both observers may have observed exactly the same actions, i.e. such
equal observations are essentially one observation. If an observation b is
incorporated multiple times, the relative frequencies h(i) no longer represent
the observed reality, as observation b is overvalued. So, if information from
different sources is incorporated, duplicated information needs to be detected
and incorporated only once.

5.4.3 Unlinkability

Steinbrecher and Köpsell [SK03b] propose another generalization which in-
troduces the notion of unlinkability and takes also local anonymity into
account. Particularly, they point out how anonymity can be quantified in
terms of unlinkability. In contrast to anonymity which is a property of
subjects, unlinkability could be a property between arbitrary items, that
is subjects, actions, events, etc. Unlinkability of items with respect to an
observation of the adversary holds, if the items are not more and not less
related for the adversary before and after her observation. Thus, if a sender
was anonymous before an adversary’s observation and unlinkability holds
with respect to the sender and her message, then the sender remains anony-
mous after the observation.

Steinbrecher and Köpsell model the relation between items as equivalence
relation on the set of items. The adversary is supposed to know the set of
items, but not to know the equivalence relation. However, the adversary
may eventually gain knowledge about the equivalence relation. This gain
in knowledge is modelled by a change in the probabilities for each possible
equivalence relation.

This approach is first applied to model unlinkability between two items

54



and then successively to more complex issues. We denote the relation be-
tween two items ai and aj within a set6 A as ai ∼r(A) aj . Furthermore,
we denote the probability which the adversary assigns to this relation as
Pr(X = (ai ∼r(A) aj)) for a random variable X or, in short, Pr(ai ∼r(A) aj).
Accordingly, Pr(ai �r(A) aj) denotes the probability that the items ai and
aj are not in relation.

The entropy H(i, j) := H(X) can then be used as a measure for the degree
of unlinkability d(i, j) of the two items ai and aj .

d(i, j) = H(i, j) (5.18)
=− Pr(ai ∼r(A) aj) · log2

(
Pr(ai ∼r(A) aj)

)
− Pr(ai �r(A) aj) · log2

(
Pr(ai �r(A) aj)

)
The degree d(i, j) becomes 0, if the adversary is either certain of ai ∼r(A) aj

or of ai �r(A) aj . The degree becomes 1, if the adversary is completely
uncertain of the relation between ai and aj , that is Pr(ai ∼r(A) aj) = 0.5 as
well as Pr(ai ∼r(A) aj) = 0.5. The former case describes perfect linkability,
whereas the latter case describes perfect unlinkability.

Similarly, the unlinkability of a set of items can be quantified. Let A ⊆ A
be a subset of all items with |A| > 2 and ∼r(A) be an equivalence relation on
A. The item set A denotes all items which an adversary observes and ∼r(A)

denotes a guess of equivalence classes in A. Therefore, the probability for
an adversary to succeed with linking is the probability for ∼r(A) being the
same as ∼r(A), the actual equivalence relation, restricted to the elements of
A, formally

Pr
(
∼r(A) = ∼r(A)

∣∣
A

)
(5.19)

The degree of unlinkability with respect to A can then be calculated by
means of the enumeration Ik of all possible equivalence relations on A and

6This could be an anonymity set. However, if we would explicitly write about anony-
mity sets here, we would unnecessarily lose generality for the types of items and entirely
stick to subjects, instead.
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the entropy of the corresponding probability distribution.

d(A) = H(A)

=−
∑
j∈Ik

1
|Ik|

pj · log2 pj (5.20)

where pj = Pr
(
∼rj(A) = ∼r(A)

∣∣
A

)
The degree d(A) is 1, if the adversary is certain of one ∼rj(A) being the same
as ∼r(A) restricted to elements of A. The degree d(A) is 0, if the adversary
is completely uncertain about all ∼rj(A), that is Pr(∼rj(A) = ∼r(A)|A) = 0.5
for each rj ∈ Ik.

Steinbrecher and Köpsell pointed out, however, that it is not sufficient to
address unlinkability within one set only. In order to describe anonymity in
terms of unlinkability, it is rather necessary to address unlinkability between
different sets. This could be, for instance, a set of messages and a set of
senders. Sender anonymity can then be described by unlinkability between
senders and messages.

The definition of unlinkability between two different sets A and B is similar
to unlinkability between two items within the same set. The equivalence
relation between two items within the same set, however, has to be replaced
by a relation ∼r(A,B) between items in A and B. The relation ∼r(A,B) itself
is no equivalence relation, however, equivalence relations ∼r(A) and ∼r(B)

can be constructed by means of capturing all a ∈ A in equivalence classes
of ∼r(A) which are related to the same b ∈ B (and vice versa for ∼r(B)).

The degree of linkability of two items within different sets d(a, b) can then
also be reduced to entropy.

d(a, b) = H(a, b) (5.21)
= − Pr(a ∼r(A,B) b) · log2

(
Pr(a ∼r(A,B) b)

)
− Pr(a �r(A,B) b) · log2

(
Pr(a �r(A,B) b)

)
5.4.4 Rényi Entropy

This section deals with phase [CAL], i.e. calculation of privacy parameters
based on a given observer state. Thereby Sections 5.4.4.1 and 5.4.4.2 refer
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to the case that a user has exactly one digital identity. Section 5.4.4.3
describes how calculations have to be done in case users may have multiple
digital identities.

5.4.4.1 Quantifying Anonymity

Shannon entropy [Sha48] is often used as a metrics for anonymity. Given an
observer state Z, the Shannon entropy H∅ of information b can be computed.

Definition 13 (Shannon entropy) Let b be an observation and Vb a set
of suspects related to observation b. The Shannon entropy of b in a state Z
is the Shannon entropy of the suspects Vb.

H∅ = −
∑

(v∈Vb)

p(v|b) log2 p(v|b) (5.22)

p(v|b) =
p(v ∧ (

∨
(w∈Vb)

w))

p(
∨

(w∈Vb)
w)

(5.23)

=
h(v)∑

(i∈Vb)
h(i)

(5.24)

In (5.24), h(i) denotes the probability of the identity i within the observer
state Z.

Given a Shannon entropy H∅, |S| = 2H∅ denotes the equivalent size of a
uniformly distributed anonymity set S.

Example: The Shannon entropy of the observation b = (0, 0,⊥) in Figure
5.1 is one Bit. This means that the suspects are as anonymous as they would
be within a uniform distributed anonymity set of size two. ♦

The Shannon entropy H∅ specifies the average amount of information needed
in addition to b in order to uniquely identify a digital identity.

Here we refer to the case that a user has only one digital identity, so that
a measurement related to a digital identity can be seen synonymous to a
measurement related to the user, who “owns” this digital identity. The
Shannon entropy H∅ specifies the average amount of information needed in
addition to b in order to uniquely identify a digital identity. In case of a
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user evaluating her anonymity, she usually knows her digital identity. So, it
may be more useful for her to compute the amount of information needed
to identify her, i.e., her digital identity. This so called individual anonymity
can be computed as follows:

H(i) = − log2 p(i|b) (5.25)

From the viewpoint of each single user, individual anonymity is the most
accurate anonymity measure.

Example: An observer knows that within a given source of information the
element A shows up with a probability of 0.5 . If the observer is only inter-
ested in the occurrence of A (i.e. how anonymous A is), this is independent
of the Shannon entropy of the information source. The anonymity measure
of A only depends on the probability of A’s occurrence. On the other hand,
the Shannon entropy also depends on the number of elements of the infor-
mation source. So, even if A occurs with a probability of 0.5, the Shannon
entropy can have an arbitrarily high value depending on number and dis-
tribution of the other elements of the information source. But the amount
of information needed to identify A remains — independent of the Shannon
entropy of the information source — the same. ♦

It is also possible to specify a worst case measure for anonymity [THV04b].
This is the individual anonymity of the identity with the highest probability
(also called Min-entropy):

HMin = − log2 max
Ib

(p(i|b)) (5.26)

In [CS06] Stefan Schiffner and I discussed usage of Rényi entropy as a
more general metric for anonymity. Rényi entropy Hα, introduced by Rényi
[Ren60], is defined as follows:

Hα =
1

1− α
log2

∑
(v∈Vb)

p(v|b)α (5.27)

Besides the probability distribution given, Rényi entropy incorporates an
additional parameter α. In Figure 5.3 the influence of α on Rényi entropy
is shown. The more α grows the more the Rényi entropy converges to
Min-entropy HMin. On the other hand, the more α runs to zero the more
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Figure 5.3: Influence of parameter α on Rényi entropy of a source containing
two elements with probabilities p and 1− p resp.

Hα converges to Max-entropy HMax = log2 N , where N is the number of
elements of the probability distribution given7. Furthermore, if α runs to 1,
Rényi entropy converges to Shannon entropy. The proofs of these facts are
given in [CS06].

By adjusting the parameter α, it is possible to fade between worst-case
anonymity, average case anonymity, and k-anonymity. So, for evaluating
anonymity within a system given, the parameter α can be adapted according
to certain characteristics of the system.

7HMax directly corresponds to k-anonymity. It denotes the entropy of a source with
k elements, thereby ignoring the probability distribution of the elements, i.e., assuming a
uniform probability distribution.
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5.4.4.2 Quantifying Linkability of Actions

Regarding linkability, it is interesting for a user, to what extent it can be
determined that actions have been done by the same user. More formally,
there are two actions c1 and c2 which have been observed in the form of
observations b1 and b2.

According to [SK03a], linkability of items of interest can be measured re-
garding equivalence classes, for which (after observations) an attacker has
partial knowledge about which items of interest belong to which class.

Applied to the model used here, the equivalence classes are the digital iden-
tities. By an observation of an action, suspect digital identities can be deter-
mined corresponding to the observation of this action (see Definition 3), i.e.
information about association of items of interest (actions) to equivalence
classes (digital identities) is gained.

Regarding observations b1 and b2, the suspect sets are Vb1 resp. Vb2 . Within
a set of suspects, a digital identity has the probability p(v|b), which is derived
from the current observer state as shown in equations (5.23) and (5.24).

The probability pr, that actions c1 and c2 belong to the same digital iden-
tities, can be computed as follows:

pr =
∑

(v∈Vb1∧b2
)

p(v|b1) · p(v|b2)

Thereby, Vb1∧b2 denotes the set of digital identities, which are contained in
both sets Vb1 and Vb2 , i.e. which are suspects of both observations, b1 and
b2. According to [SK03a], the probability p¬r, that the actions c1 and c2 do
not belong to the same digital identity is 1− pr.

From probabilities pr and p¬r a degree of linkability d can be computed by
using the Shannon entropy [SK03a]:

d := H(pr, p¬r) = −pr · log2 pr − p¬r · log2 p¬r

The events “actions c1 and c2 belong to the same digital identity” and
“actions c1 and c2 do not belong to the same digital identity” are used as
elements of a two-element source of information. The degree of linkability d
is the Shannon entropy of this source. It specifies, how much an observer has
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learnt about the relation between c1 and c2 from observations Vb1 and Vb2 ,
taking also into account the a-priori knowledge about the digital identities
derived from the current observer state.

The maximum degree of linkability, d = 1, means that the observer does not
know anything about whether actions c1 and c2 belong to the same digital
identity or not.

If pr > p¬r, the degree denotes the certainty of the observer, that actions c1

and c2 belong to the same digital identity, otherwise it denotes the certainty
of the observer that the actions do not belong to the same digital identity.

In case a user has only one digital identity, linkability related to a digital
identity is the same as linkability related to a user. The next section deals
with users having multiple digital identities.

5.4.4.3 Users with Multiple Digital Identities

In real life, a user will often not only have one digital identity, but lots of
them. So, for example a user may have many different e-mail addresses,
which she uses in different situations. Nevertheless also in this case, a user
will be interested in her privacy, and not only in the privacy of one of her
digital identities.

In order to calculate privacy parameters for users having multiple identities,
we can first determine suspect digital identities as described for the different
metrics in the previous sections. Now, in order to calculate measurements
with respect to users, we need to group suspect digital identities belonging
to the same user into personal digital identities. Thereby, grouping means
that for each user the probability values of all digital identities belonging
to this user are summed up. For a meaningful per-user-grouping of digital
identities the observer state used must contain attributes, which can be
used to distinguish between different users. If this is not the case, such an
observer state cannot be used to determine privacy parameters of users.

After the probabilities of personal digital identities are determined, calcula-
tions of anonymity and linkability metrics can be done as described above,
but based on probabilities of these personal digital identities.
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Chapter 6

Conclusions

This document, in a close relation to the deliverable D13.1 Identity and
impact of privacy enhancing technologies, provided not only a critical review
of issues relevant to identity and privacy modelling, but also some insight
into the potential of existing relevant privacy modelling approaches.

Majority of models that we have identified in this and earlier research rely in
one way or another on context information that describes entity behaviour
in a system. Privacy/content models discussed in this deliverable aim to
process the data to learn frequent behavioral patterns as well as to de-
cide how sensitive information this data may contain. Metrics for privacy
quantification then aim to measure the degree of privacy a protocol or a
communication system can provide to its users. Another purpose of such
quantification is to provide a metric for the (level of) privacy which users
actually may expect with respect to their situation, e.g., considering their
previous actions.

We reviewed most promising context information models and behaviour
modelling approaches, starting with context information models like the
Freiburg Privacy Diamond and PATS, but also models based on set theory,
directed graphs, first-order logic and finally a variant of Object-Role mod-
elling. With respect to the behaviour modelling techniques, we discussed the
global mixture model, maximum entropy model and hidden Markov model,
together with a discussion of data mining (namely cluster analysis) and its
importance to user behaviour modelling.
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Finally, we analyzed existing metrics for privacy properties quantification
(anonymity, pseudonymity, unlinkability, unobservability), starting with for-
mal methods that have been proposed for determination of the degree of
anonymity, namely “function views”, but also addressing privacy in (sta-
tistical) databases with respect to possible risk of entities’ re-identification
and the degree of user’s anonymity provided in systems like the DC net,
mix-based systems or Crowds.

Deliverable D13.1 and this deliverable 13.6 are now essential for the follow-
up work of FIDIS WP13, where the plan is as follows:

• Deliverable D13.8: Applicability of privacy models, where we plan to
use some privacy modelling approaches in use-cases involving profiling,
systems using different forms of identities, etc. The goal of that deliv-
erable will be to review/illustrate the applicability of models from this
deliverable D13.6, and this deliverable actually went few steps ahead
in this way.

• Deliverable D13.9: Estimating quality of identities that will extend our
previous work by showing (if possible) how theoretical models may be
used for real-world scenarios. The result should describe the ways
to estimate quality of identities in some real-case scenarios, with the
vision to involve some distinct technologies identified in other work of
FIDIS, namely of WP3.
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