
Liberty Alliance Project: Version: 2.1

Liberty ID-WSF Data Services Template
Version: 2.1

Editors:
Sampo Kellomäki, Symlabs, Inc.
Jukka Kainulainen, Nokia Corp.

Contributors:
Robert Aarts, Hewlett-Packard
Rajeev Angal, Sun Microsystems, Inc.
Conor Cahill, America Online, Inc.
Carolina Canales-Valenzuela, Ericsson
Darryl Champagne, IEEE-ISTO
Andy Feng, America Online, Inc.
Gael Gourmelen, France Télécom
Jeff Hodges, NeuStar, Inc.
Lena Kannappan, France Télécom
John Kemp, Nokia Corporation
Rob Lockhart, IEEE-ISTO
Paul Madsen, NTT
Aravindan Ranganathan, Sun Microsystems, Inc.
Matti Saarenpää, Nokia Corporation
Jonathan Sergent, Sun Microsystems, Inc.
Lakshmanan Suryanarayanan, America Online, Inc
Greg Whitehead, Hewlett-Packard

Abstract:

The Data Services Template provides protocols, schema and processing rules for the query, creation, deletion, and
modification of data objects and their attributes exposed by a data service using the Liberty Identity Web Services
Framework (ID-WSF). Some guidelines and common XML attributes and data types for data services are defined.

Filename: liberty-idwsf-dst-v2.1.pdf

Liberty Alliance Project

1

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Notice1

This document has been prepared by Sponsors of the Liberty Alliance. Permission is hereby granted to use the2
document solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works3
of this Specification. Entities seeking permission to reproduce portions of this document for other uses must contact4
the Liberty Alliance to determine whether an appropriate license for such use is available.5

Implementation of certain elements of this document may require licenses under third party intellectual property6
rights, including without limitation, patent rights. The Sponsors of and any other contributors to the Specification are7
not and shall not be held responsible in any manner for identifying or failing to identify any or all such third party8
intellectual property rights.This Specification is provided "AS IS", and no participant in the Liberty Alliance9
makes any warranty of any kind, express or implied, including any implied warranties of merchantability,10
non-infringement of third party intellectual property rights, and fitness for a particular purpose. Implementers11
of this Specification are advised to review the Liberty Alliance Project’s website (http://www.projectliberty.org/) for12
information concerning any Necessary Claims Disclosure Notices that have been received by the Liberty Alliance13
Management Board.14

Copyright © 2006 Adobe Systems; America Online, Inc.; American Express Company; Amsoft Systems Pvt Ltd.;15
Avatier Corporation; Axalto; Bank of America Corporation; BIPAC; BMC Software, Inc.; Computer Associates16
International, Inc.; DataPower Technology, Inc.; Diversinet Corp.; Enosis Group LLC; Entrust, Inc.; Epok, Inc.;17
Ericsson; Fidelity Investments; Forum Systems, Inc.; France Télécom; French Government Agence pour le18
développement de l’administration électronique (ADAE); Gamefederation; Gemplus; General Motors; Giesecke &19
Devrient GmbH; GSA Office of Governmentwide Policy; Hewlett-Packard Company; IBM Corporation; Intel20
Corporation; Intuit Inc.; Kantega; Kayak Interactive; MasterCard International; Mobile Telephone Networks (Pty)21
Ltd; NEC Corporation; Netegrity, Inc.; NeuStar, Inc.; Nippon Telegraph and Telephone Corporation; Nokia22
Corporation; Novell, Inc.; NTT DoCoMo, Inc.; OpenNetwork; Oracle Corporation; Ping Identity Corporation;23
Reactivity Inc.; Royal Mail Group plc; RSA Security Inc.; SAP AG; Senforce; Sharp Laboratories of America;24
Sigaba; SmartTrust; Sony Corporation; Sun Microsystems, Inc.; Supremacy Financial Corporation; Symlabs, Inc.;25
Telecom Italia S.p.A.; Telefónica Móviles, S.A.; Trusted Network Technologies; UTI; VeriSign, Inc.; Vodafone26
Group Plc.; Wave Systems Corp. All rights reserved.27

Liberty Alliance Project28
Licensing Administrator29
c/o IEEE-ISTO30
445 Hoes Lane31
Piscataway, NJ 08855-1331, USA32
info@projectliberty.org33

Liberty Alliance Project

2

http://www.projectliberty.org/

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Contents34

1. Introduction . 535
1.1. Notation . 536
1.2. Liberty Considerations. 537
1.3. Namespaces. 538
1.4. Applying DST to Define Services. .639
1.5. Applying the DST Reference Model. 640

2. Data Model . 841
2.1. Guidelines for Schemata. 842
2.2. Extending a Service. 843
2.3. Time Values and Synchronization. .944
2.4. Common XML Attributes. .945

2.4.1. ThecommonAttributes XML Attribute Group . 1046
2.4.2. TheleafAttributes XML Attribute Group . 1047
2.4.3. ThelocalizedLeafAttributes XML Attribute Group . 1148
2.4.4. Individual Common XML attributes. 1249

2.5. Common Data Types. 1250
3. Message Interface. .1451

3.1. Multiple Occurrences of Request or Response. .1452
3.2. Status and Fault Reporting. 1453

3.2.1. Top Level<Status>Element .1554
3.2.2. Second Level<Status>Codes . 1655

3.3. ThetimeStamp XML Attribute .1756
3.4. General Error Handling. .1857
3.5. Linking with id s . 1858
3.6. Resources. .1859
3.7. Selection. .1960
3.8. Common Processing Rules for Selection. 2061

3.8.1. Processing Rules for thepredefined XML Attribute . 2062
3.8.2. Processing Rules for theobjectType XML Attribute . 2163
3.8.3. Processing Rules for the<Select>Element . 2164

3.9. Requesting Meta and Additional Data. 2165
3.10. Common Processing Rules for Requesting Meta and Additional Data. .2266

4. Querying Data. .2467
4.1. The<Query> Element . 2468

4.1.1. The<TestItem> Element .2569
4.1.2. The<QueryItem> Element .2670
4.1.3. Pagination. 2771

4.2. The<QueryResponse>Element . 2872
4.3. <ResultQuery>or <QueryItem> Conditioned by<TestItem> . 2873
4.4. Processing Rules for Queries. .2974

4.4.1. Processing Rules for Multiple<QueryItem> Elements . 2975
4.4.2. Processing Rules for<Select>Element . 2976
4.4.3. Sorting Query Results. 3077
4.4.4. Pagination of Query Results. 3078
4.4.5. Effect of Access and Privacy Policies. 3279
4.4.6. Querying Changes Since Specified Time. 3280
4.4.7. Requesting Common XML Attributes. .3481

4.5. Examples . 3582
5. Creating Data Objects. 4283

5.1. <Create>Element . 4284
5.2. <CreateResponse>Element . 4285
5.3. Processing Rules for Creating Data Objects. .4386

Liberty Alliance Project

3

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

5.3.1. Multiple<CreateItem> Elements . 4387
5.3.2. Only One Type of Data Object per<CreateItem> .4388
5.3.3. HandlingcommonAttributes andleafAttributes upon Creation.4389
5.3.4. WSC Might Mot Be Allowed to Add Certain Data or Any Data. 4490
5.3.5. WSP May Place Some Restrictions for the data It Is Hosting. 4491

6. Deleting Data Objects. 4692
6.1. <Delete>Element . 4693
6.2. <DeleteResponse>Element . 4694
6.3. Processing Rules for Deletion. 4695

6.3.1. Supporting Multiple<DeleteItem>Elements . 4696
6.3.2. Only One Type of Data Object May Be Deleted with One<DeleteItem> 4797
6.3.3. Avoiding Deletion of Data if It Has Changed In-between. 4798
6.3.4. WSC Might Not Be Allowed to Delete Certain or Any Data. 4799

7. Modifying Data .49100
7.1. <Modify> Element . 49101
7.2. <ModifyResponse>Element . 50102
7.3. Processing Rules for Modifications. 50103

7.3.1. Multiple<ModifyItem> Elements .50104
7.3.2. What Exactly Is Modified. .51105
7.3.3. HandlingcommonAttributes andleafAttributes in Modify . 52106
7.3.4. Accounting for Concurrent Updates. .52107
7.3.5. WSC Might Not Be Allowed to Make Only Certain or Any Modifications.53108
7.3.6. WSP May Impose Some Restrictions for the Data It Is Hosting. 53109

7.4. Examples of Modifications. .53110
8. WSF-1.1 Compatibility .56111
9. Actions . 57112
10. Checklist for Service Specifications. .58113
11. Schemata. 61114

11.1. DST Reference Model Schema. .61115
11.2. DST Utility Schema . 64116

References . 68117

Liberty Alliance Project

4

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1. Introduction118

This specification provides protocols for the creation, query, modification, and deletion (a.k.a. "CRUD") of data119
attributes, exposed by a data service, related to a Principal. Some guidelines, common XML attributes and data types120
are defined for data services.121

This specification does not give a strict definition as to which services are data services and which are not, i.e., to122
which services this specification is targeted. A data service, as considered by this specification, is a web service that123
supports the storage and update of specific data attributes regarding a Principal. A data service might also expose124
dynamic data attributes regarding a Principal. Those dynamic attributes may not be stored by an external entity, but125
the service knows or can dynamically generate their values.126

An example of a data service would be a service that hosts and exposes a Principal’s profile information (such as name,127
address and phone number). An example of a data service exposing dynamic attributes is a geolocation service.128

The data services using this specification can also support other protocols than those specified here. They are not129
restricted to support just querying and modifying data attributes, but they can also support actions (e.g., making130
reservations). Also some services might support only querying data without supporting modifications and in some131
cases there could be services supporting only modifications without supporting querying, i.e., other parties are allowed132
to give new data, but not query existing. The specification provides many features and data services must choose which133
features to use and how to use them.134

This specification has three main parts. First some common attributes, guidelines and type definitions to be used by135
different data services are defined and the XML schema for those is provided. Second, the methods of accessing the136
data are provided, including an XML schema for the Data Services Template (DST) protocols. Finally, a checklist is137
given for writing services on top of the DST.138

1.1. Notation139

When capitalized, the key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT," "SHOULD,"140
"SHOULD NOT," "RECOMMENDED," "MAY," and "OPTIONAL" in this specification are to be interpreted as141
described in [RFC2119]. When these words are not capitalized, they are meant in their natural-language sense.142

This specification uses the following typographical conventions in text:<Element>, <ns:ForeignElement>,143
attribute , DataType , OtherCode .144

For readability, when an XML Schema type is specified to bexs:boolean , this document discusses the values as145
"true " and "false " rather than the "1" and "0" which will exist in the document instances.146

Definitions for Liberty-specific terms can be found in [LibertyGlossary].147

1.2. Liberty Considerations148

This specification contains enumerations of values that are centrally administered by the Liberty Alliance Project.149
Although this document may contain an initial enumeration of approved values, implementers of the specification150
MUST implement the list of values whose location is currently specified in [LibertyReg] according to any relevant151
processing rules in both this specification and [LibertyReg].152

1.3. Namespaces153

The namespaces described in table 1 are used.154

Liberty Alliance Project

5

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Table 1. Normatively referenced XML namespaces155

Prefix URI Description

dst: urn:liberty:dst:2006-08 Target namespace of DST utility schema.

dstref: urn:liberty:dst:2006-08:ref Target namespace of DST reference model.

xml: http://www.w3.org/XML/1998/namespace W3C XML [XML]

xs: http://www.w3.org/2001/XMLSchema W3C XML Schema Definition Language
[Schema1-2]

ds: urn:liberty:disco:2006-08 Liberty ID-WSF Discovery Service [Liberty-
Disco]

lu: urn:liberty:util:2006-08 Li erty Utility schema

1.4. Applying DST to Define Services156

In order to define a service the service specification is expected to reference DST for common processing rules and157
utility schema. Where common definitions are not appropriate, the service specification is expected to158

a.Answer every question specified in the check list, seeSection 10159

b.Waive inappropriate processing rules160

c.Define additional processing rules161

d.Alter DST SHOULD statements to either MUST or MUST NOT if appropriate162

e.Define service schema in terms of DST utility schema. It is RECOMMENDED that the schema mimic the163
Reference Model, seeSection 11.1, as appropriate. The service schema is likely to define at leastAppDataType164
and possibly other service specific aspects.165

1.5. Applying the DST Reference Model166

The DST reference model, seeSection 11.1, depicts a prototypical service schema. The dstref: namespace would be167
substituted by the service specific namespace. Since the service is fully defined by its own independent schema,168
it is free to redefine all aspects as it sees fit. However, to promote common approach to data services, it is169
RECOMMENDED that the service follow this reference model wherever there is no specific reason to diverge from170
it.171

In particular, when this document specifies processing rules, the method names, such as<Create>, <Query>, etc.,172
specified by the reference model are used. If service schema chooses other method names, it needs to specify173
correspondence to reference model method names so that applicable processing rules can be determined.174

<xs:element name="Create" type="dstref:CreateType"/>175
<xs:element name="CreateResponse" type="dstref:CreateResponseType"/>176
<xs:element name="Query" type="dstref:QueryType"/>177
<xs:element name="QueryResponse" type="dstref:QueryResponseType"/>178
<xs:element name="Modify" type="dstref:ModifyType"/>179
<xs:element name="ModifyResponse" type="dstref:ModifyResponseType"/>180
<xs:element name="Delete" type="dstref:DeleteType"/>181
<xs:element name="DeleteResponse" type="dstref:DeleteResponseTy pe"/>182

Figure 1. Reference Definitions of Methods183

Liberty Alliance Project

6

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

The reference model provides dummy definitions of some important extension points. Typical service schema will184
provide its own definitions for these.185

<xs:complexType name="SelectType">186
<xs:simpleContent>187

<xs:extension base="xs:string"/>188
</xs:simpleContent>189

</xs:complexType>190
<xs:complexType name="TestOpType">191

<xs:simpleContent>192
<xs:extension base="xs:string"/>193

</xs:simpleContent>194
</xs:complexType>195
<xs:complexType name="SortType">196

<xs:simpleContent>197
<xs:extension base="xs:string"/>198

</xs:simpleContent>199
</xs:complexType>200
<xs:complexType name="AppDataType">201

<xs:simpleContent>202
<xs:extension base="xs:string"/>203

</xs:simpleContent>204
</xs:complexType>205

206

Figure 2. DST Parameterization Points207

Liberty Alliance Project

7

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2. Data Model208

A data service provides access to the data. The data consists of one or more objects and there can be multiple objects209
of same type. For each different type of a data service the supported objects must be specified. One type of data210
service might support only one object, another might support multiple objects of same type and a third might support211
multiple types of objects and multiple instances of objects of the same type. For each service type an XML schema212
must be specified. There can also be multiple XML schemata for one service type as different data objects might be in213
different schemata. The XML schema for a service type defines the data that the service type can host and the structure214
of this data. See [LibertyDisco] for more information about service types.215

A data object has a root element which contains data in subelements. The name of this root element is used as the216
object type identifier. Individual objects can be accessed by defining the object type and selecting from the objects217
of that type the right one. Selecting can be done using an identifier, which is unique among those objects, using218
some data values object contains or using some service type specific parameters, which give enough information to a219
service so that it can calculate, what data the requestor wants to access. Individual data elements inside objects can220
also be accessed separately, e.g., from a contact card the name can be queried separately. The specification for each221
service type defines in details, how the selecting is done. This document gives common rules, but the actual selection222
mechanism is specified in the service specifications.223

The data may be stored in implementation specific ways, but will be exposed by the service using the XML schema224
specified both in this document, and that of the defined service type. This also means that the XML document defined225
by the schema is a conceptual XML document. Depending upon the implementation, there may be no XML document226
that matches the complete conceptual document. The internal storage of the data is separate and distinct from the227
document published through this model.228

The schemata for different service types may have common characteristics. This section describes the commonalities229
specified by the Data Services Template, provides schema for common XML attributes and data types, and also gives230
some guidelines.231

2.1. Guidelines for Schemata232

The schemata of different data services SHOULD follow guidelines defined here. The purpose of these guidelines is233
to make the use of the Data Services Template easier when defining and implementing services.234

1.Each data attribute regarding the Principal SHOULD be defined as an XML element of a suitable type.235

2.XML attributes SHOULD be used only to qualify the data attribute defined as XML elements and not contain the236
actual data values related to the Principal.237

3.An XML element SHOULD either contain other XML elements or actual data value. An XML element SHOULD238
NOT havemixed content, i.e., both a value and sub-elements. Also complex typesall andchoice SHOULD239
NOT be used.240

4.Once a data attribute has been published in a specification for a service type, its syntax and semantics MUST not241
change. If evolution in syntax or semantics is needed, any new version of a data attribute MUST be assigned a242
different name, effectively creating a new attribute with new semantics so that it does not conflict with the original243
attribute definition.244

5.All elements MUST be defined as global elements, when they can be requested individually. When elements with245
complex type are defined, references to global elements are used. The reason for this guideline is that the XML246
Schema for a service does not only define the syntax of the data supported by the service but also the transfer247
syntax. In many cases it should be possible to query and modify individual elements.248

6.The type definitions provided by the XML Schema SHOULD be used, when they cover the requirements.249

Liberty Alliance Project

8

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2.2. Extending a Service250

A service, defined by its specification and schema, MAY be extended in different ways. What types of extensions251
are supported in practice MUST be specified individually by each service specification, or agreed locally between the252
WSC and WSP.253

1.An implementation MAY add new elements and XML attributes to an already specified object or it may add totally254
new objects. The new data MUST use its own namespace until it is added to the official service specification and255
schema of the service type.256

2.When new features for a service are specified (e.g., new elements), new keywords SHOULD be specified for257
indicating the new features using the<Option> element (see [LibertyDisco] for more information).258

3.New values for enumerators MAY be specified subsequent to the release of a specification document for a259
specific service type. The specification for a service type MUST specify the authority for registering new official260
enumerators (whether that authority is the specification itself, or some external authority). For specification done261
by Liberty Alliance, see [LibertyReg].262

4.Elements defined in the XML schema for a service type MAY contain an<xs:any> element to support arbi-263
trary schema extension. When the<xs:any> elements are in the schema, an implementation MAY support264
this type of extension, but is not required to. The<xs:any> elements SHOULD always be put inside<Ex-265
tension> elements. If an implementation does support this type of schema extension, then it MAY register266
the urn:liberty:dst:can:extend discovery option keyword. When a service holds new data, which is not defined267
in the schema for the service type but is stored using this kind of support for extensions, it MAY register the268
urn:liberty:dst:extend discovery option keyword.269

The <Extension> Element270

All messages have an<Extension> element for services which need more parameters. The<Extension> element271
SHOULD NOT be used in a message, unless its content and related processing rules have been specified for the272
service. If the receiving party does not support the use of the<Extension>element, it MUST ignore it.273

2.3. Time Values and Synchronization274

Some of the common XML attributes are time values. All Liberty time values have the typedateTime , which is built275
in to the W3C XML Schema Data Types specification. Liberty time values MUST be expressed in the UTC (a.k.a.276
GMT or the "Zulu" time) form, indicated by a "Z" immediately following the time portion of the value.277

Liberty requestors and responders SHOULD NOT rely on other applications supporting time resolution finer than sec-278
onds, as implementations MAY ignore fractional second components specified in timestamp values. Implementations279
MUST NOT generate time instants that specify leap seconds.280

The timestamps used in the DST schemata are only for the purpose of data synchronization and no assumptions should281
be made as to clock synchronization. As clocks might not be well synchronized, a WSC SHOULD check the general282
timestamps returned in response messages and compare those to its own clock. This helps a WSC to better evaluate283
different timestamps attached to different data items.284

2.4. Common XML Attributes285

The XML elements defined in the XML schemata for the services either contain data values or other XML elements.286
So an XML element is either a leaf element or a container. The containers MUST NOT have any other data content287
than other XML elements and possible qualifying XML attributes. To contrast, theleaf elements do not contain other288
XML elements. These leaf elements can be further divided into two different categories: normal and localized. The289
normal leaf elements typically contain a string or URI constant. The localized leaf elements contain text using a local290
writing system.291

Liberty Alliance Project

9

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Both leaf and container XML elements can have service-specific XML attributes, but there are also common XML292
attributes supplied for use by all data services. These common XML attributes are technical attributes, which are293
usually created by the Web Service Provider (WSP) hosting a data service (for more details, seeSection 7). These294
technical attributes are not mandatory for all data services, but if they are implemented, they MUST be implemented295
in the way described in this document. Each service should specify separately if one or more of these common XML296
attributes are mandatory or optional for that service. In addition to the common XML attributes, we define attribute297
groups containing these common XML attributes. There are three attribute groups:commonAttributes mainly298
targeted for container elements and for the leaf elementsleafAttributes andlocalizedLeafAttributes .299

<xs:attribute name="id" type="lu:IDType"/>300
<xs:attribute name="modificationTime" type="xs:dateTime"/>301
<xs:attributeGroup name="commonAttributes">302

<xs:attribute ref="dst:id" use="optional"/>303
<xs:attribute ref="dst:modificationTime" use="optional"/>304

</xs:attributeGroup>305
<xs:attribute name="ACC" type="xs:anyURI"/>306
<xs:attribute name="ACCTime" type="xs:dateTime"/>307
<xs:attribute name="modifier" type="xs:string"/>308
<xs:attributeGroup name="leafAttributes">309

<xs:attributeGroup ref="dst:commonAttributes"/>310
<xs:attribute ref="dst:ACC" use="optional"/>311
<xs:attribute ref="dst:ACCTime" use="optional"/>312
<xs:attribute ref="dst:modifier" use="optional"/>313

</xs:attributeGroup>314
<xs:attribute name="script" type="xs:anyURI"/>315
<xs:attributeGroup name="localizedLeafAttributes">316

<xs:attributeGroup ref="dst:leafAttributes"/>317
<xs:attribute ref="xml:lang" use="required"/>318
<xs:attribute ref="dst:script" use="optional"/>319

</xs:attributeGroup>320
<xs:attribute name="refreshOnOrAfter" type="xs:dateTime"/>321
<xs:attribute name="destroyOnOrAfter" type="xs:dateTime"/>322

Figure 3. DST Common XML Attributes323

2.4.1. The commonAttributes XML Attribute Group324

There are only two common XML attributes:325

id (optional) Theid is a unique identifier within a document. It can be used to refer uniquely to an element,326
especially when there may be several XML elements with the same name. If the schema for327
a data service does not provide any other means to distinguish between two XML elements328
and this functionality is needed, theid XML attribute MUST be used. It is only meant for329
distinguishing XML elements within the same conceptual XML document. It MUST NOT be330
a globally unique identifier, because that would create privacy problems. An implementation331
MAY set specific length restrictions onid XML attributes to enforce this. The value of the332
id XML attribute SHOULD stay the same when the content of the element is modified so the333
same value of theid XML attribute can be used when querying the same elements at different334
times. Theid XML attribute MUST NOT be used for storing any data and it SHOULD be335
kept short.336

modificationTime (optional) The modificationTime specifies the last time that the element was modified.337
Modification includes changing either the value of the element itself, or any sub-element. So338
the time of the modification MUST be propagated up all the way to the root element, when339
container elements have themodificationTime XML attribute. If the root element has the340
modificationTime XML attribute, it states the time of the latest modification. Note that a341
data service may have themodificationTime XML attribute used only in leaf elements or342
not even for those as it is optional.343

Liberty Alliance Project

10

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2.4.2. The leafAttributes XML Attribute Group344

This group includes thecommonAttributes XML attribute group and defines three more XML attributes for leaf345
elements (XML elements not containing other XML elements):346

modifier (optional) The modifier is the ProviderID of the service provider which last modified the data347
element.348

ACC(optional) The acronymACCstands forAttribute Collection Contextwhich describes the context (or349
mechanism) used in collecting the data. This might give useful information to a requestor,350
such as whether any validation has been done. TheACCalways refers to the current data351
values, so whenever the value of an element is changed, the value of theACCmust be updated352
to reflect the new situation. TheACCis of typeanyURI .353

The following are defined values for theACCXML attribute:354

urn:liberty:dst:acc:unknown This means that there has been no validation, or the values are355
just voluntary input from the user. TheACCMAY be omitted in the356
message exchange when it has this value, as this value is equivalent357
to supplying noACCXML attribute at all.358

urn:liberty:dst:acc:incentive There has been some incentive for user to supply correct input359
(such as a gift sent to the user in return for their input).360

urn:liberty:dst:acc:challengeA challenge mechanism has been used to validate the col-361
lected data (e.g., an email sent to address and a reply received or362
an SMS message sent to a mobile phone number containing a WAP363
URL to be clicked to complete the data collection)364

urn:liberty:dst:acc:secondarydocumentsThe value has been validated from secondary doc-365
uments (such as the address from an electric bill).366

urn:liberty:dst:acc:primarydocumentsThe value has been validated from primary docu-367
ments (for example, the name and identification number from a368
passport).369

Other values are allowed forACC, but this specification normatively defines usage only for370
the values listed above.371

When theACCis included in the response message, the response SHOULD be signed by the372
service provider hosting the data service.373

ACCTime (optional) This defines the time that the value for theACCXML attribute was given. Note that this can be374
different from themodificationTime . TheACCcontains information that may be related375
to the validation of the entry. Such validation might happen later than the time the entry was376
made, or modified. The entry can be validated more than once.377

2.4.3. The localizedLeafAttributes XML Attribute Group378

This XML attribute group includes theleafAttributes XML attribute group and defines two more XML attributes379
to support localized data. UTF-8 is capable of carrying the data in the right format, but it is difficult to access out of380
the XML elements having the same name the one containing the information in the right language and writing system.381
These XML attributes should be used when multiple languages can be used and it is important to be able to get the382
data in the right language and writing system.383

Liberty Alliance Project

11

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

xml:lang (required) This defines the language used for the value of a localized leaf element. When the<local-384
izedLeafAttributes> XML attribute group is used for an element, this is a mandatory XML385
attribute.386

script (optional) Sometimes the language does not define the writing system used. In such cases, this XML387
attribute defines the writing system in more detail. This specification defines the following388
values for this XML attribute: urn:liberty:dst:script:kana and urn:liberty:dst:script:kanji.389
See [LibertyReg] where to find additional values, if any, and how to specify more values.390

2.4.4. Individual Common XML attributes391

In addition to the previous XML attribute groups a couple of more common XML attributes are defined and available392
for services. The XML attributes in XML attribute groups can also be used individually without taking the whole393
attribute group into use, but the following XML attributes are assumed to be seldom used and so they are not included394
in any of the XML attribute groups.395

refreshOnOrAfter A WSC may cache the information in the element and if it chooses to do so, it SHOULD396
refresh the data from the WSP if it attempts to use the data beyond the time specified. If the397
data is not refreshed (for whatever reason) a WSC MAY continue to use it. This parameter398
does NOT place an obligation upon the WSP to keep the value of the data static during this399
timespan, so it is possible (and in some cases likely) that the contents of the element will400
change during the specified period. WSCs that require timely data should request the most401
up to date data when they need it rather than caching the data.402

destroyOnOrAfter Even if a WSC has not been able to refresh the information, it SHOULD destroy it, if the403
element containing the information has the XML attributedestroyOnOrAfter and the time404
specified by that attribute has come. The information most probably is so out of date that it405
is unusable.406

2.5. Common Data Types407

The type definitions provided by XML schema can not always be used directly by Liberty ID-WSF data services, as408
they lack the common XML attributes noted above. The DST data type schema provides types derived from the XML409
Schema ([XML]) data type definitions with those common XML attributes added to the type definitions. Please note410
that for strings there are two type definitions, one for localized elements and another for elements normalized using411
the Latin 1 character set. The common data type definitions are depicted inFigure 4.412

Liberty Alliance Project

12

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<xs:complexType name="DSTLocalizedString">413
<xs:simpleContent>414

<xs:extension base="xs:string">415
<xs:attributeGroup ref="dst:localizedLeafAttributes"/>416

</xs:extension>417
</xs:simpleContent>418

</xs:complexType>419
<xs:complexType name="DSTString">420

<xs:simpleContent>421
<xs:extension base="xs:string">422

<xs:attributeGroup ref="dst:leafAttributes"/>423
</xs:extension>424

</xs:simpleContent>425
</xs:complexType>426
<xs:complexType name="DSTInteger">427

<xs:simpleContent>428
<xs:extension base="xs:integer">429

<xs:attributeGroup ref="dst:leafAttributes"/>430
</xs:extension>431

</xs:simpleContent>432
</xs:complexType>433
<xs:complexType name="DSTURI">434

<xs:simpleContent>435
<xs:extension base="xs:anyURI">436

<xs:attributeGroup ref="dst:leafAttributes"/>437
</xs:extension>438

</xs:simpleContent>439
</xs:complexType>440
<xs:complexType name="DSTDate">441

<xs:simpleContent>442
<xs:extension base="xs:date">443

<xs:attributeGroup ref="dst:leafAttributes"/>444
</xs:extension>445

</xs:simpleContent>446
</xs:complexType>447
<xs:complexType name="DSTMonthDay">448

<xs:simpleContent>449
<xs:extension base="xs:gMonthDay">450

<xs:attributeGroup ref="dst:leafAttributes"/>451
</xs:extension>452

</xs:simpleContent>453
</xs:complexType>454

Figure 4. General Data Types with DST Attributes455

Liberty Alliance Project

13

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

3. Message Interface456

This specification defines number of protocols for data services. These protocols rely mainly on a request-response457
message exchange pattern. The only exceptions are the notification messages, which might not get any response. The458
messages specified in this document are carried in the SOAP body. No additional content is specified for the SOAP459
header in this document, but implementers of these protocols MUST follow the rules defined in [LibertySOAPBind-460
ing], including passing credentials or target ID that allows the resource to be accessed to be determined.461

The following table lists the protocol elements specified by this specification (with respect to the DST reference462
model).463

Table 2. Requests and Responses464

Request by a WSC Response by a WSP

<Create> <CreateResponse>

<Delete> <DeleteResponse>

<Query> <QueryResponse>

<Modify> <ModifyResponse>

<Create> and<Delete>are used to create new objects and delete existing objects. The data inside an object can be465
modified using<Modify> , this includes deleting individual data items inside an object. Whole objects or data inside466
objects can be queried using<Query>.467

The messages for different protocols have common features, XML attributes and elements. These common issues are468
discussed in this chapter and the actual messages are specified in the following chapters. Together with common parts469
the related processing rules are also defined. In the text, especially in the processing rules, theRequestElementis used470
to replace the actual request element in many cases. These parts MUST be read as if instead of aRequestElementthere471
would be any of the following elements:<Create>, <Delete>, <Query> or <Modify> .472

TheResponseElementis used instead of the actual response element in many places. Those parts MUST be read as if473
instead of aResponseElementthere would be any of the following elements:<CreateResponse>, <DeleteResponse>,474
<QueryResponse>or <ModifyResponse>.475

<xs:complexType name="RequestType">476
<xs:sequence>477

<xs:element ref="lu:Extension" minOccurs="0" maxOccurs="unbounded"/>478
</xs:sequence>479
<xs:attribute ref="lu:itemID" use="optional"/>480
<xs:anyAttribute namespace="##other" processContents="lax"/>481

</xs:complexType>482
<xs:complexType name="DataResponseBaseType">483

<xs:complexContent>484
<xs:extension base="lu:ResponseType">485

<xs:attribute name="timeStamp" use="optional" type="xs:dateTime"/>486
</xs:extension>487

</xs:complexContent>488
</xs:complexType>489

490

Figure 5. Commonality of Requests and Responses491

3.1. Multiple Occurrences of Request or Response492

Liberty Alliance Project

14

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

If service specification permits, all request and response elements MAY occur multiple times in the message (e.g.,493
the SOAP<body> if the SOAP binding is used). This mechanism can serve as a batch optimization or the service494
specification MAY choose to attach some transactional semantics to this construct.495

3.2. Status and Fault Reporting496

Two mechanism are defined to report back to the requestor whether the processing of a request was successful or not497
or something in between. [LibertySOAPBinding] defines the ID-* Fault message, which is used to convey processing498
exception. An ordinary ID-* Message carrying normal response is used to report back application statuses including499
normal error conditions, when an application has detected an error condition as part of the normal processing, e.g.,500
processing according to the processing rules specified in this document.501

From the Data Service Template point of view there are the following cases in which the ID-* Fault Message is used.502

1.When a WSP does not recognize anyRequestElementin the SOAP Body, it MUST return an ID-* Fault Message503
and useIDStarMsgNotUnderstood as the value of thecode XML attribute as specified by [LibertySOAP-504
Binding]. This fault MAY also be applied to situations where implementation or deployment has permanently505
chosen not to support certain type of request (e.g., read only service).506

2. In the same way, a WSC that receives an empty or malformed notification MUST return an ID-* Fault Message507
and useIDStarMsgNotUnderstood as the value of thecode XML attribute.508

3. If a WSP based on identifying the requesting party notices that the requesting party is not allowed to make any509
requests, it MUST return an ID-* Fault Message and useActionNotAuthorized as the value of thecode XML510
attribute.511

4.A receiving party may also encounter an unexpected error due to which it fails to handle the message body. In512
that case it MUST return an ID-* Fault Message and useUnexpectedError as the value of thecode XML513
attribute.514

A service specification MAY define more cases in which ID-* Fault Message is used.515

Even if the processing of some parts of a message body fails, a WSP SHOULD always try to process the message516
body as well as it can according the specified processing rules and return normal response message indicating the failed517
parts in returned status codes (seeSection 3.2.2) as one message may contain multiple task requests and succeeding518
in individual tasks is valuable, unless processing rules specify that after the first failed part the whole message should519
fail.520

OneRequestElementmay contain number of individual task request (e.g., inside a<Query> there can be multiple521
<QueryItem> elements). So, after failing to complete one requested task, there could be a number of other tasks522
requested in the same message and a WSP SHOULD try to complete those unless service specific processing rules523
specify otherwise.524

3.2.1. Top Level <Status> Element525

A ResponseElementelement contains one top level<Status> element to indicate whether or not the processing of526
a RequestElementhas succeeded. The<Status>element is included from the Liberty Utility Schema. A<Status>527
element MAY contain other<Status> elements, providing more detailed information. A<Status> element has a528
code XML attribute, which contains the return status as a string. The local definition of these codes is specified in this529
document.530

Thecode XML attribute of the top level<Status>element MUST contain one of the following valuesOK, Partial531
or Failed .532

Liberty Alliance Project

15

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

OK The valueOKmeans that the processing of aRequestElementhas succeeded. A second level status533
code MAY be used to indicate some special cases, but the processing of aRequestElementhas534
succeeded.535

Partial The valuePartial means that the processing has succeeded only partially and partially failed,536
e.g., in the processing of a<Query> element some<QueryItem> element has been processed537
successfully, but the processing of some other<QueryItem> elements has failed. When the value538
Partial is used for thecode XML attribute of the top level<Status> element, the top level539
<Status> element MUST have second level<Status> elements to indicate the failed parts of a540
RequestElement. The processing of the parts not referred to by any of the second level<Status>541
elements MUST have succeeded. A WSP MUST NOT use the valuePartial , if it has not542
processed the wholeRequestElement.543

A WSP MUST NOT use the valuePartial in case of modification requests, when a failed544
<ModifyItem> element didn’t have a validitemID XML attribute, i.e., a WSP is not able to indicate545
the failed<ModifyItem> element. In those cases a WSP MUST use the valueFailed and anything546
changed based on the already processed part MUST be rolled back.547

A WSP MAY also choose to fail completely another type ofRequestElement, when only a part of it548
has failed, if the failed part does not have a validitemID XML attribute. When ever the top level549
valueFailed is used instead ofPartial due to one or more missingitemID XML attributes, the550
second level status codeMissingItemID MUST be used in addition to any other second level status551
code.552

In some cases the most descriptive second level status code may not be used as it, for example, might553
compromise the privacy of a Principal. In those cases, when the second level status code must be554
used to indicate the failed parts in a case of a partial failure, the valueUnspecifiedError MUST555
be used for the second level status code.556

Failed The valueFailed means that the processing of aRequestElementhas failed. Either the processing557
of the wholeRequestElementhas totally failed or it might have succeeded partially, but the WSP558
decided to fail it completely. A specification for a service MAY also deny the use of the partial559
failure and so force a WSP to fail, even when it could partially succeed. A second level status code560
SHOULD be used to indicate the reason for the failure.561

3.2.2. Second Level <Status> Codes562

This specification defines the following second level status codes to be used as values for thecode XML attribute:563

ActionNotAuthorized564
AggregationNotSupported565
AllReturned566
ChangeHistoryNotSupported567
ChangedSinceReturnsAll568
DataTooLong569
DoesNotExist570
EmptyRequest571
ExistsAlready572
ExtensionNotSupported573
Failed574
FormatNotSupported575
InvalidData576
InvalidExpires577
InvalidItemIDRef578
InvalidObjectType579
InvalidPredefined580
InvalidSelect581
InvalidSetID582
InvalidSetReq583
InvalidSort584
ItemIDDuplicated585

Liberty Alliance Project

16

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

ResultQueryNotSupported586
MissingCredentials587
MissingDataElement588
MissingExpiration589
MissingItemID590
MissingNewDataElement591
MissingObjectType592
MissingSecurityMechIDElement593
MissingSelect594
ModifiedSince595
NewOrExisting596
NoMoreElements597
NoMoreObjects598
NoMultipleAllowed599
NoMultipleResources600
NoSuchTest601
ObjectTypeMismatch602
OK603
PaginationNotSupported604
Partial605
RequestedAggregationNotSupported606
RequestedPaginationNotSupported607
RequestedSortingNotSupported608
RequestedTriggerNotSupported609
SecurityMechIDNotAccepted610
SetOrNewQuery611
SortNotSupported612
StaticNotSupported613
TimeOut614
TriggerNotSupported615
UnexpectedError616
UnspecifiedError617
UnsupportedObjectType618
UnsupportedPredefined619

620
621

If a request or notification fails for some reason, theref XML attribute of the<Status>element SHOULD contain622
the value of theitemID XML attribute of the offending element in the request message. When the offending element623
does not have theitemID XML attribute, the reference SHOULD be made using the value of theid XML attribute,624
if that is present.625

If it is not possible to refer to the offending element (as it has noid , or itemID XML attribute) the reference SHOULD626
be made to the ancestor element having a proper identifier XML attribute closest to the offending element.627

When a WSC compose a request message, it SHOULD avoid using same value for any two XML attributes, which628
can be used to refer to the right place in return status. If there anyway are two XML attributes with the same value629
and a WSP needs to refer using either of them when indicating a problem, a WSP MAY consider the whole message630
as failed or used that value, when a high priority XML attribute has it. The priority order isitemID , id , so, for631
example, if both anitemID and anid has same value, it can be used to refer to the element having theitemID XML632
attribute with that value.633

3.3. The timeStamp XML Attribute634

A response and a notification message can also have a time stamp. This time stamp is provided so that the receiving635
party can later check whether there have been any changes since a response or a notification was received, or make636
modifications, which will only succeed if there have been no other modifications made after the time stamp was637
received.638

The processing rule for thetimeStamp XML Attribute639

Liberty Alliance Project

17

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

A WSP MUST add atimeStamp to aResponseElement, if the processing of theRequestElementwas successful and640
a WSP supports either thechangedSince XML attribute or thenotChangedSince XML attribute or both properly.641
The timeStamp XML attribute MUST have a value which can also be used as a value for thechangedSince642
XML attribute, when querying changes made after the request for which thetimeStamp was returned or the643
notification, which had thetimeStamp . The value of thetimeStamp XML attribute MUST also be such that it644
can be used as a value for thenotChangedSince XML attribute, when making modifications after the request for645
which thetimeStamp was returned or after receiving the notification message, which carried thetimeStamp and the646
modifications will not succeed, if there has been any modification after this request or notification.647

3.4. General Error Handling648

A WSP MAY also register a relevant discovery option keyword to indicate that it does not support certain type of649
requests although they are available based on the specification for the service a WSP is hosting. Following discovery650
option keywords are specified for this purpose:651

• urn:liberty:dst:noQuery652

• urn:liberty:dst:noCreate653

• urn:liberty:dst:noDelete654

• urn:liberty:dst:noModify655

A WSP may encounter problems other than errors in the incoming message:656

1. If the processing takes too long (for example some back-end system is not responding fast enough) the second657
level status codeTimeOut SHOULD be used to indicate this, when the request is not processed due to a658
WSP internal time out. The duration and indeed criteria for deciding when timeout has happened depend on659
WSP and are not externally visible other than the fact that theTimeOut status code is returned. Note that660
[LibertySOAPBinding] specifies a header block which a WSC may use to define threshold for timeout, but that661
is different functionality and the processing rules for that are specified in [LibertySOAPBinding].662

2.Other error conditions than those listed in this specification and in service specifications may occur. There are663
two status codes defined for those cases. For cases a WSP (or WSC receiving a notification) can handle normally664
but for which there is no status code specified, the second level status codeUnspecifiedError SHOULD be665
used. For totally unexpected cases the second level status codeUnexpectedError SHOULD be used.666

3.5. Linking with id s667

Different types ofid XML attributes are used to link queries and responses and notifications and acknowledgments to-668
gether (seeFigure 5). Response messages are correlated with requests using<wsa:messageID>and<wsa:RelatesTo>669
SOAP headers (see [LibertySOAPBinding]). Inside messagesitemID and itemIDRef XML attributes are used for670
linking information inside response and acknowledgment messages to the details of request and notification messages.671

See the definitions and the processing rules of the protocol elements for more detailed information.672

Some elements in all messages can haveid XML attributes of typexs:ID . Theseid XML attributes are necessary673
when some part of the message points to those elements. As an example, if usage directives are used, then the usage674
directive element must point to the correct element (see [LibertySOAPBinding]). Some parts of the messages may be675
signed and theid XML attribute is necessary to indicate which elements are covered by a signature.676

It often happens that a query item of some sort needs to be correlated with a data item. TheitemID anditemIDRef677
XML attributes are used for this purpose. They differ from regular XML ID attributes in that the namespace, and678
consequently the uniqueness constraint, are per type of item referred, i.e., sameitemID can appear in<TestItem>679
and<QueryItem> without danger of confusion.680

Liberty Alliance Project

18

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

3.6. Resources681

The present version of DST differs from previous versions, seeSection 8, significantly in the way the resource is682
accessed: there is no explicit ResourceID anymore. The resource is identified by one of the following mechanisms683

• Implicitly (e.g., PAOS exchange)684

• From<TargetIdentity> SOAP header, see [LibertySOAPBinding]685

• Using credentials that were supplied: it is presumed that the resource of the credential holder, i.e., the principal686
herself, is to be accessed.687

• From endpoint. A service may choose to offer different end point for every resource accessed. The simplest case688
of this is to represent the resource as a part of the query string.689

If confidentiality of the resource being accessed is desired, the<TargetIdentity> or the credentials, a SAML690
assertion inside<wss:Security>header, SHOULD contain an encrypted SAML assertion (this mechanism replaces691
the<EncryptedResourceID>mechanism of DST 1.1).692

3.7. Selection693

The second level of the selection is deeper inside theRequestElementelement. The request message must describe in694
more detail what it wants to access inside the specified resource. This can be specified in two different ways. Either695
the requesting WSC accesses data by selecting it explicitly in the request or usespredefinedselection. When the696
predefined selections are supported, the available predefined selections are specified in the service specification or are697
agreed out of band. A WSC specifies the predefined selection it wants to use by putting its identifier into the request.698
The identifier is carried as the value of thepredefined XML attribute. When a WSC explicitly selects the data, it699
has to first specify the type of the data object it wants to access and then select the right objects and the data inside it.700
The XML attributeobjectType and the element<Select>are specified for making the explicit selection.701

<xs:element name="ChangeFormat">702
<xs:simpleType>703

<xs:restriction base="xs:string">704
<xs:enumeration value="ChangedElements"/>705
<xs:enumeration value="CurrentElements"/>706

</xs:restriction>707
</xs:simpleType>708

</xs:element>709
<xs:attribute name="changeFormat">710

<xs:simpleType>711
<xs:restriction base="xs:string">712

<xs:enumeration value="ChangedElements"/>713
<xs:enumeration value="CurrentElements"/>714
<xs:enumeration value="All"/>715

</xs:restriction>716
</xs:simpleType>717

</xs:attribute>718
<xs:attribute name="objectType" type="xs:NCName"/>719
<xs:attribute name="predefined" type="xs:string"/>720
<xs:attributeGroup name="selectQualif">721

<xs:attribute ref="dst:objectType" use="optional"/>722
<xs:attribute ref="dst:predefined" use="optional"/>723

</xs:attributeGroup>724

Figure 6. XML Attributes for <Select>725

The name of the root element of an object is used as the identifier of that object type (XML attributeobjectType).726
Each service specification must list the supported object types and provide their names, schemata and semantics. All727
object types starting by underscore character ("_") are reserved for use by Liberty framework specifications. Other728
than that, the namespace of object types is up to the service specification. When a service type supports only one729

Liberty Alliance Project

19

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

type of object, theobjectType XML attribute may be left out from request messages. Also a service may specify a730
default object type, which is assumed, if theobjectType XML attribute is not present.731

As an example, when the resource is a personal profile, the<Select>can point to a home address. In the case of a732
<Query>, this means that the whole home address is requested, or for a<Modify> , the whole home address is being733
modified, etc. When only a part of a home address is accessed, the<Select>element must point only to that part, or in734
the case of a<Modify> the parts not to be modified must be rewritten using their existing values, when whole home735
address is given. Different parts of the resource can be accessed using the sameRequestElementelement as those736
elements can contain multiple<Select>elements in their own sub-structure.737

Please note that the previous paragraph only described an example. The<Select>element may also be used differently.738
It is defined to contain needed parameters, but the parameters are defined by the specification for a service type. A739
service may have multiple different type of parameters characterizing data to be accessed and, for example, instead of740
pointing to some point in a data structure, the content of the<Select>element may, for example, list the data items to741
be accessed with some quality requirements for the data to be returned.742

The<Select>element may also be omitted from a request, when all objects of the specified or default type are accessed,743
e.g., queried, in one request.744

The type of<Select> is SelectType . Although the type is referenced bythis specification, the type may vary745
according to the service specifications using this schema, and therefore MUST be defined within each service schema.746
As the type of the<Select>element may be quite different in different services, a service specification MUST specify747
the needed processing rules, if the processing rules provided by this specification are not adequate. If there are any748
conflicts the processing rules in the service specifications MUST override the processing rules in this specification.749

When theSelectType is specified for a service, it must be very careful about what type of queries and modifies750
needs to be supported. Typically the<Select>points to some place in the conceptual XML document and it is751
RECOMMENDED that a string containing an XPath expression is used for<Select>element in those kind of cases.752
There are many other type of cases and theSelectType must be properly specified to cover the needs of a service753
type.754

As a service may support different type of objects, theSelectType MUST be defined so that it supports all different755
types of objects.756

When XPath is used, it is not always necessary to support full XPath. Services SHOULD limit the required set of757
XPath expressions in their specifications when full XPath is not required. A service may support full XPath even if758
it is not required. In that case the service MAY register the urn:liberty:dst:fullXPath discovery option keyword. If759
the required set of XPath expressions does not include the path to each element, a service may still support all paths760
without supporting full XPath. In that case the service MAY register the urn:liberty:dst:allPaths discovery option761
keyword.762

3.8. Common Processing Rules for Selection763

3.8.1. Processing Rules for the predefined XML Attribute764

1.When a WSC uses thepredefined XML attribute in a subelement of aRequestElementelement, it MUST NOT765
use theobjectType XML attribute, the<Select>element, or the<Sort> element. If either or all of them are766
present anyway together with apredefined XML attribute, a WSP MUST ignore them, when processing that767
subelement.768

Liberty Alliance Project

20

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2. If the predefined XML attribute contains an identifier of a predefined selection, which a WSP does not769
support, the processing of the subelement containing thepredefined XML attribute MUST fail and a status770
code indicating the failure MUST be returned in the response. A more detailed status code with the value771
UnsupportedPredefined SHOULD be used in addition to the top level status code. If thepredefined772
XML attribute contains an unknown value, the processing of the subelement containing thepredefined XML773
attribute MUST fail and a status code indicating failure MUST be returned in the response. A more detailed status774
code with the valueInvalidPredefined SHOULD be used in addition to the top level status code.775

3.A WSP MUST follow service specific processing rules for the values of thepredefined XML attribute.776

3.8.2. Processing Rules for the objectType XML Attribute777

1. If the objectType XML attribute is missing from a subelement of aRequestElementelement, when it is778
supposed to be used, the processing of that subelement MUST fail and a status code indicating the failure MUST779
be returned in the response. A more detailed status code with the valueMissingObjectType SHOULD be used780
in addition to the top level status code. The subelements referred here are the<QueryItem>, the<CreateItem>,781
the<DeleteItem>, the<ModifyItem> , and the<ResultQuery>. All these elements are defined later with other782
protocol elements. Note: in some cases theobjectType XML attribute is not needed, e.g., when a default object783
type has been defined for a service and that object type is accessed or a service only supports oneobjectType .784

2. If the objectType XML attribute refers to a specified object type, but the WSP does not support it, the785
processing of the subelement containing theobjectType XML attribute MUST fail. A more detailed status786
code with the valueUnsupportedObjectType SHOULD be used in addition to the top level status code. If the787
objectType XML attribute contains an unknown object type name, the processing of the subelement containing788
theobjectType XML attribute MUST fail. A more detailed status code with the valueInvalidObjectType789
SHOULD be used in addition to the top level status code. Note that a data service may support extensions,790
making it difficult for a requestor to know the exact set of allowable values for theobjectType XML attribute.791

3.8.3. Processing Rules for the <Select> Element792

1. If the <Select>element is missing from a subelement of aRequestElementelement, when it is supposed to be use,793
the processing of that subelement MUST fail and a status code indicating the failure MUST be returned in the794
response. A more detailed status code with the valueMissingSelect SHOULD be used in addition to the top795
level status code. The subelements referred here are the<DeleteItem>, the<QueryItem>, the<ResultQuery>,796
and the<ModifyItem> . All these elements are defined later with other protocol elements. Note: in some cases797
the<Select>element is not needed.798

2. If the<Select>element has invalid content, e.g., does not match with the object type specified by theobjectType799
XML attribute, contains an invalid pointer to a data not supported by the WSP or doesn’t contain the specified800
parameters, the processing of the subelement containing the<Select>element MUST fail and a status code801
indicating failure MUST be returned in the response. A more detailed status code with the valueInvalidSelect802
SHOULD be used in addition to the top level status code, unless a service specification specifies more detailed803
status codes better suited for the case. Note that a data service may support extensions, making it difficult for a804
requestor to know the exact set of allowable values for the<Select>element.805

3.9. Requesting Meta and Additional Data806

ResultQueryType and ItemDataType have an important role as parent classes ofQueryType and <Data>,807
respectively.808

When a WSC sends a request to create or modify data, it might want to get back some additional data in addition to the809
normal processing status, e.g., to get metadata a WSP has added to the newly created data.<Create>and<Modify>810
elements allow inclusion of<ResultQuery> elements in a request. A<ResultQuery> element is the basic data811
selection element and can contain normal selection parameters: XML attributespredefined andobjectType and812
<Select>element. It may have also other parameters used in normal queries. These parameters and their processing813

Liberty Alliance Project

21

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

rules are introduced inSection 4. The data queried with one<ResultQuery>element is returned in one<ItemData>814
element.815

<ItemData> is very similar to the<Data> element used to return data in responses to normal queries. The only816
difference is that the<Data> element can have more XML attributes as normal queries have more features like817
pagination. For the XML attributes common to both alternatives the same description and processing rules are valid,818
seeSection 4for details.819

<xs:complexType name="ResultQueryBaseType">820
<xs:sequence>821

<xs:element ref="dst:ChangeFormat" minOccurs="0" maxOccurs="2"/>822
</xs:sequence>823
<xs:attributeGroup ref="dst:selectQualif"/>824
<xs:attribute ref="lu:itemIDRef" use="optional"/>825
<xs:attribute name="contingency" use="optional" type="xs:boolean"/>826
<xs:attribute name="includeCommonAttributes" use="optional" type="xs:boolean" default="0"/>827
<xs:attribute name="changedSince" use="optional" type="xs:dateTime"/>828
<xs:attribute ref="lu:itemID" use="optional"/>829

</xs:complexType>830
<xs:attributeGroup name="ItemDataAttributeGroup">831

<xs:attribute ref="lu:itemIDRef" use="optional"/>832
<xs:attribute name="notSorted" use="optional">833

<xs:simpleType>834
<xs:restriction base="xs:string">835

<xs:enumeration value="Now"/>836
<xs:enumeration value="Never"/>837

</xs:restriction>838
</xs:simpleType>839

</xs:attribute>840
<xs:attribute ref="dst:changeFormat" use="optional"/>841

</xs:attributeGroup>842

Figure 7. XML Attributes and Base Type for ResultQuery and ItemData843

<xs:element name="Select" type="dstref:SelectType"/>844
<xs:element name="ResultQuery" type="dstref:ResultQueryType"/>845
<xs:complexType name="ResultQueryType">846

<xs:complexContent>847
<xs:extension base="dst:ResultQueryBaseType">848

<xs:sequence>849
<xs:element ref="dstref:Select" minOccurs="0" maxOccurs="1"/>850
<xs:element name="Sort" minOccurs="0" maxOccurs="1" type="dstref:SortType"/>851

</xs:sequence>852
</xs:extension>853

</xs:complexContent>854
</xs:complexType>855
<xs:element name="ItemData" type="dstref:ItemDataType"/>856
<xs:complexType name="ItemDataType">857

<xs:complexContent>858
<xs:extension base="dstref:AppDataType">859

<xs:attributeGroup ref="dst:ItemDataAttributeGroup"/>860
</xs:extension>861

</xs:complexContent>862
</xs:complexType>863

Figure 8. Reference Model ResultQuery and ItemData864

It is recommended that service specification writers study carefully when allowing requesting additional data provides865
enough benefits compared to separate queries to justify the additional complexity.866

3.10. Common Processing Rules for Requesting Meta and Additional867

Data868

Liberty Alliance Project

22

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1.A <ResultQuery> element MUST be processed as if it was a<QueryItem> element and the<Data> element869
used to carry the responses is replaced with<ItemData> taking into account the facts that failing<ResultQuery>870
elements do not usually cause a failure of the request message and that<ResultQuery> and<ItemData> have871
less features. SeeSection 4for details.872

2. If the processing of an<ResultQuery> element fails, the rest of the request message MUST be processed873
normally unless otherwise specified in the service specification. Proper second level status codes SHOULD874
be used indicate The reason for failing to process the<ResultQuery> element, but this MUST NOT affect the875
value of the top level status code unless otherwise specified in the service specification.876

3. If a WSP does not support<ResultQuery>inside<Create>or <Modify> elements and it receives such, it MUST877
ignore it and process the message otherwise normally. Not responding to an<ResultQuery> is not considered878
failure and MUST NOT affect the value of the top level status code unless otherwise specified in the service879
specification. The second level status codeResultQueryNotSupported MUST be used to indicate that the880
WSP does not support this feature, if the feature is allowed in the service specification.881

4.Each<ResultQuery>element MUST have theitemID XML attribute. Each<ItemData> element MUST have882
an itemIDRef XML attribute referring to the corresponding<ResultQuery> in the request.883

5.A WSP MAY return additional data in a<CreateResponse>and a <ModifyResponse>without a WSC884
requesting for it. A WSC MUST tolerate such unsolicited<ItemData> even if it does not interpret it. Unsolicited885
<ItemData> MUST NOT have anitemIDRef XML attribute.886

Unsolicited data can be useful, if the WSP thinks that the WSC needs this data, e.g., to be able access the same887
data later on. For example a WSP may assign locally uniqueid to a newly created object and it wants to return888
it to the WSC so that the WSC could access the same object easily later on889

6. If <ResultQuery> is used inside<Create>or <Modify> and it uses relative query expressions, the query MUST890
be interpreted relative to the data object just created or modified.891

7. If <ResultQuery> is used inside<Create> or <Modify> , the objectType XML attribute of former MUST892
agree with the one in the latter.893

Liberty Alliance Project

23

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

4. Querying Data894

Two different kinds of queries are supported; one for retrieving current data, and another for requesting only changed895
data. These two different kinds of queries can be present together in the same message. The response can contain the896
data with or without the common technical XML attributes, depending on the request. Some common XML attributes897
are always returned for some elements. When there are multiple elements matching the search criteria, they can be898
requested in smaller sets and sorted by defined criteria.899

4.1. The <Query> Element900

The <Query> element, which MAY appear multiple times in message body, unless forbidden by the service901
specification, has following sub-elements:902

<TestItem> (optional) Test items, if present, can be used to specify tests over the data. A test evaluates to true or903
false without returning any data.904

<QueryItem> (optional) Specifies what data the requestor wants from the resource and how. There can be multiple905
<QueryItem> elements in one<Query>. Or there could be none: in this case the query906
is evaluated only for purposes of the test items. A<QueryItem> can becontingenton a907
<TestItem> by referencing the latter via an ID. Often the data set used to evaluate the test908
will also be helpful for the query, e.g., the test can prime the cache for the query.909

<xs:complexType name="TestItemBaseType">910
<xs:attributeGroup ref="dst:selectQualif"/>911
<xs:attribute name="id" use="optional" type="xs:ID"/>912
<xs:attribute ref="lu:itemID" use="optional"/>913

</xs:complexType>914
<xs:element name="TestResult" type="dst:TestResultType"/>915
<xs:complexType name="TestResultType">916

<xs:simpleContent>917
<xs:extension base="xs:boolean">918

<xs:attribute ref="lu:itemIDRef" use="required"/>919
</xs:extension>920

</xs:simpleContent>921
</xs:complexType>922

Figure 9. Utility Schema for TestItem and TestResult923

Liberty Alliance Project

24

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<xs:complexType name="QueryType">924
<xs:complexContent>925

<xs:extension base="dst:RequestType">926
<xs:sequence>927

<xs:element ref="dstref:TestItem" minOccurs="0" maxOccurs="unbounded"/>928
<xs:element ref="dstref:QueryItem" minOccurs="0" maxOccurs="unbounded"/>929

</xs:sequence>930
</xs:extension>931

</xs:complexContent>932
</xs:complexType>933
<xs:element name="TestItem" type="dstref:TestItemType"/>934
<xs:complexType name="TestItemType">935

<xs:complexContent>936
<xs:extension base="dst:TestItemBaseType">937

<xs:sequence>938
<xs:element name="TestOp" minOccurs="0" maxOccurs="1" type="dstref:TestOpType"/>939

</xs:sequence>940
</xs:extension>941

</xs:complexContent>942
</xs:complexType>943
<xs:element name="QueryItem" type="dstref:QueryItemType"/>944
<xs:complexType name="QueryItemType">945

<xs:complexContent>946
<xs:extension base="dstref:ResultQueryType">947

<xs:attributeGroup ref="dst:PaginationAttributeGroup"/>948
</xs:extension>949

</xs:complexContent>950
</xs:complexType>951

Figure 10. Reference Model for Query, TestItem, and QueryItem952

4.1.1. The <TestItem> Element953

The<TestItem> contains a<TestOp> qualified by some attributes. The two, in conjunction withobjectType are954
used to indicate955

1. the data on which the test is to be performed956

2. the reference data against which the data (1) is to be tested957

3. the nature of the test.958

<TestOp> element959

The content of the<TestOp>, theTestOpType , MUST be specified by the service specification that references DST.960

For example, if service specification specifies XPath as query language and WSC wanted to ask whether or not the961
principal is of age, it could do so as follows:962

<TestItem objectType="profile">963
<TestOp>//Age >= ’21’</TestOp>964

</TestItem>965
966
967

In the above example, all 3 aspects of the test are expressed within the XPath expression that appears in<TestOp>.968

Each<TestItem> evaluates to true or false depending on result of evaluation of the<TestOp>.969

If service specification specifies XPath and<TestOp>does not indicate a top-level XPath boolean() function, the WSP970
MUST interpret the test expression as if this function was present.971

Liberty Alliance Project

25

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Service Specific XPath Functions972

Service specifications are encouraged to define XPath functions to simplify the expression of particular tests that are973
expected to be frequently requested. For instance, a profile specification might define a XPath function to simplify the974
of-age query:975

number profile:age-compare([//age,] int test-age, string operator)976
977
978

and permit selection like979

<TestOp>profile:age-compare(’21’, ’gt’)</TestOp>980
981
982

Of course every service specific function requires service specific implementation, thus there is a continuum from983
XPath standard to slightly customized, to fully custom query languages and the service specification authors have to984
make the value judgment about where the sweet spot lies.985

predefined XML attribute986

While objectClass and <TestOp> aim to declaratively specify the test, in a specific deployment by mutual987
agreement of parties involved in message exchange, thepredefined XML attribute can be used to specify some988
agreed test.989

4.1.2. The <QueryItem> Element990

The<QueryItem> element is a refinement ofResultQueryType , inheriting theobjectType XML attribute and the991
<Select>and<Sort> elements as well as adding pagination related XML attributes.992

TheobjectType and<Select>specify the data the query should return. The contents of the<Select>are determined993
by SelectType which MUST be defined by the service specification referencing DST.994

When the<Select>defines that one or more data elements should be returned, then all of these elements (including995
their contained descendants) are returned unless service specific parameters filter out some or all requested data. Also996
privacy rules may not allow returning some or all of the requested data.997

The <QueryItem> can also have a<Sort> element. The type and possible content of this element are specified by998
the services using this feature. The<Sort> element contains the criteria according to which the data in the response999
should be sorted. For example, address cards of a contact book could be sorted based on names using either ascending1000
or descending order. As sorting is resource consuming the service specification MUST use sorting very carefully and1001
specify sorting only based on the data and criteria which are really needed. In many cases sorting on the server side1002
is not needed at all. When sorting is needed, only a very limited set of available sorting criteria should be defined.1003

The<QueryItem> can also have a<ChangeFormat>element (seeFigure 6). The value of this element specifies, in1004
which format the requesting WSC would like to have the data, when querying for changes. Two different formats are1005
defined in this specification. These formats are explained in the processing rules (seeSection 4.4).1006

The<QueryItem> element can have two XML attributes qualifying the query in more detail:1007

Liberty Alliance Project

26

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

includeCommonAttributes (optional) The includeCommonAttributes specifies what kind of response is1008
requested. The default value isFalse , which means that only the data specified in the1009
service definition is returned. If the common XML attributes specified for container and1010
leaf elements in this document are also needed, then this XML attribute must be given the1011
valueTrue . If the id XML attribute is used for distinguishing similar elements from one1012
other by the service, it MUST always be returned, even if theincludeCommonAttributes1013
is False .1014

Thexml:lang andscript XML attributes are always returned when they exist.1015

changedSince (optional) ThechangedSince XML attribute should be used when the requestor wants to get only1016
the data which has changed since the time specified by this XML attribute. The changed1017
data can be returned in different ways. A WSC should specify the format it prefers using1018
the element<ChangeFormat>. Please note that use of thischangedSince XML attribute1019
does not require a service to support the common XML attributemodificationTime .1020
The service can keep track of the modification times without providing those times as1021
modificationTime XML attributes for different data elements.1022

In addition to theid XML attribute, the<ResultQuery> or <QueryItem> element can also have anitemID XML1023
attribute. TheitemID XML attribute is correlated withitemIDRef XML attributes in the<Data> elements in the1024
response to match the data to the<QueryItem> that produced them. Such correlation is necessary if the<Query>1025
element contains multiple<QueryItem> elements.1026

4.1.3. Pagination1027

When the search criteria defined in the<Select>matches multiple elements of same type and name, the WSC may1028
want to have the data in smaller sets, i.e., a smaller number of elements at a time. This is achieved by using the XML1029
attributescount , offset , setID andsetReq of the <QueryItem> element. The basic XML attributes are the1030
count and theoffset :1031

count (optional) Thecount XML attribute defines, how many elements should returned in a response. This1032
is the amount of the elements directly addressed by the<Select>, their descendants are1033
automatically included in the response, if not elsewhere otherwise specified.1034

offset (optional) The offset XML attribute specifies, from which element to continue, when querying for1035
more data. The default value is zero, which refers to the first element.1036

<xs:attributeGroup name="PaginationAttributeGroup">1037
<xs:attribute name="count" use="optional" type="xs:nonNegativeInteger"/>1038
<xs:attribute name="offset" use="optional" type="xs:nonNegativeInteger" default="0"/>1039
<xs:attribute name="setID" use="optional" type="lu:IDType"/>1040
<xs:attribute name="setReq" use="optional">1041

<xs:simpleType>1042
<xs:restriction base="xs:string">1043

<xs:enumeration value="Static"/>1044
<xs:enumeration value="DeleteSet"/>1045

</xs:restriction>1046
</xs:simpleType>1047

</xs:attribute>1048
</xs:attributeGroup>1049
<xs:attributeGroup name="PaginationResponseAttributeGroup">1050

<xs:attribute name="remaining" use="optional" type="xs:integer"/>1051
<xs:attribute name="nextOffset" use="optional" type="xs:nonNegativeInteger" default="0"/>1052
<xs:attribute name="setID" use="optional" type="lu:IDType"/>1053

</xs:attributeGroup>1054

Figure 11. XML Attributes for Pagination1055

Liberty Alliance Project

27

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Changes may happen while a WSC is requesting the data in smaller sets as this requires multiple<Query> messages1056
and so will cause multiple<QueryResponse>s. This is not a problem for many services, but with some services1057
this might cause problems as an inconsistent set of data may be returned to the requesting WSC. If supported by1058
the service type and the WSP, a WSC may request that the modifications done by others are not allowed to effect1059
what the requesting WSC gets. In the first<Query> of a sequence, the requesting WSC includes thesetReq1060
XML attribute with the valueStatic . The query response returns an identification for the set and in the following1061
queries, this is included as the value of thesetID XML attribute. At the end the WSC requests that the set is deleted1062
(setReq="DeleteSet") to free the resources on the WSP side.1063

setID (optional) ThesetID XML attribute contains an identification of a set. This must be used by a WSC,1064
when it wants to make sure that no modifications are done to the set, while it is querying the1065
data from the set.1066

setReq (optional) With thesetReq XML attribute a WSC is able to request that a consistent set is created for1067
coming queries (valueStatic) or a set is deleted (DeleteSet).1068

A service specification MUST specify the elements for which the pagination is supported. The pagination is not meant1069
to be available for every request, just for a selected types of requests. As the use of the static sets may consume more1070
resources on the server side than the normal pagination, the use of static sets must be considered carefully.1071

4.2. The <QueryResponse> Element1072

In addition to different identifiers the<QueryResponse>contains1073

<Status> Overall success or failure of the query1074

<TestResult>(optional) Indications of the outcomes of the test items that were present in the<Query>.1075

<Data> (optional) The data resulting from<QueryItem> elements. Each<Data> is correlated to corresponding1076
<QueryItem> usingitemIDRef XML attribute.1077

The <QueryResponse>elements are correlated, using theiritemIDRef XML attributes, to the<Query> elements1078
(ItemID XML attributes).1079

The requested data is encapsulated inside<Data> elements. One<Data> element contains data requested by one1080
<QueryItem> element. If there were multiple<QueryItem> elements in the<Query>, the <Data> elements are1081
linked to their corresponding<QueryItem> elements using theitemIDRef XML attributes.1082

If a WSC requested sorting, but a WSP does not support the requested type of sorting or sorting in general, a WSP1083
SHOULD return the data unsorted, but then it MUST indicate this by including the XML attributenotSorted within1084
the<Data> element carrying the unsorted data. ThenotSorted XML attribute may have either the valueNow, when1085
the requested sorting is not supported, but sorting in general is, orNever , when the sorting is not supported at all.1086

If a WSC was querying for changes, the<Data> element may contain the XML attributechangeFormat to indicate1087
in which format the changes are returned (seeFigure 6).1088

The<Data> element extendsItemDataType with XML attributesnextOffset andremaining , when a smaller set1089
of the data instead all the data was requested using thecount and theoffset XML attributes in the request. The1090
nextOffset XML attribute in a response is the offset of the first item not included in the response. So the value of1091
thenextOffset XML attribute in a response can be used directly for theoffset XML attribute in the next request,1092
when the data is fetched sequentially. Theremaining XML attribute defines, how many items there are after the last1093
item included in the response. ThesetID XML attribute is also included, when a static set is accessed.1094

If there were multiple<Query> elements in the request message, the<QueryResponse>elements are linked to1095
corresponding<Query> elements withitemIDRef XML attributes.1096

Liberty Alliance Project

28

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

4.3. <ResultQuery> or <QueryItem> Conditioned by <TestItem>1097

ResultQueryType hasitemIDRef andcontingency attributes so that the query items can be made contingent on1098
some<TestItem>. This itemIDRef correlates with theitemID in the<TestItem>, seeSection 4.1.11099

1.A service specification MAY restrict, or forbid, use of<TestItem> in conjunction with<ResultQuery> or1100
<QueryItem>. if use of<TestItem> is fully supported, the WSP MAY register the discovery option keyword1101

urn:liberty:dst:contingentQueryItems1102
1103
1104

2. If contingency attribute is present, thenitemIDRef MUST be present as well and vice versa.1105

3. If the itemIDRef attribute does not match<TestItem> then the WSP MUST stop processing the<QueryItem>1106
or <ResultQuery>and return a second level status codeNoSuchTest .1107

4. If <QueryItem> or <ResultQuery>has acontingency attribute, the WSP MUST process the<QueryItem>1108
or <ResultQuery> if and only if the<TestItem> referenced using theitemIDRef evaluates to the value of the1109
contingency XML attribute.1110

5.The scope of theitemIDRef is one<Query>, <Create>, or <Modify> . itemIDRef MUST NOT refer to1111
itemID in another top level element. TheitemID XML attributes of<TestItem> elements MUST be unique1112
within one<Query>, <Create>, or <Modify> element in the request. The<TestItem>, <ResultQuery>, and1113
<QueryItem> share sameitemID space.1114

4.4. Processing Rules for Queries1115

NOTE: The common processing rules specified earlier MUST also be followed (seeSection 3).1116

4.4.1. Processing Rules for Multiple <QueryItem> Elements1117

One<Query> element can contain multiple<QueryItem> elements. The following rules specify how those must be1118
supported and handled:1119

1.A WSP MUST support one<QueryItem> element inside a<Query> and SHOULD support multiple. If a WSP1120
supports only one<QueryItem> element inside a<Query> and the<Query> contains multiple<QueryItem>1121
elements, the processing of the whole<Query> MUST fail and a status code indicating failure MUST be returned1122
in the response. A more detailed status code with the valueNoMultipleAllowed SHOULD be used in addition1123
to the top level status code. If a WSP supports multiple<QueryItem> elements inside a<Query>, it MAY1124
register the urn:liberty:dst:multipleQueryItems discovery option keyword.1125

2. If the <Query> contains multiple<QueryItem> elements, the WSC MUST additemID XML attributes to each1126
<QueryItem> element. The WSP MUST link the<Data> elements to corresponding<QueryItem> elements1127
using theitemIDRef XML attributes, if there wereitemID XML attributes in the<QueryItem> elements1128
and there were multiple<QueryItem> elements in the<Query>. The itemIDRef XML attribute in a<Data>1129
element MUST have the same value as theitemID XML attribute in the corresponding<QueryItem> element.1130

3. If processing of a<QueryItem> fails, any remaining unprocessed<QueryItem> elements SHOULD NOT be1131
processed. The data for the already processed<QueryItem> elements SHOULD be returned in the response1132
message and the status code MUST indicate the failure to completely process the whole<Query>. A more1133
detailed status SHOULD be used in addition to the top level status code to indicate the reason for failing to1134
process the first failed<QueryItem>.1135

4.Unless service specification expressly allows an empty<Query/>, <Query> MUST have at least one1136
<QueryItem> or <TestItem> element. If not,<Query> MUST fail with EmptyRequest second levelcode . If1137
empty<Query/> is allowed, it SHOULD have semantics of returning the default document.1138

Liberty Alliance Project

29

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

4.4.2. Processing Rules for <Select> Element1139

1. If there is nochangedSince XML attribute in the<QueryItem> element and the<Select>requests valid data1140
elements, but there are no values, the WSP MUST NOT return any<Data> element for that<QueryItem>1141
unless a WSC is requesting pagination. In this case a WSP MUST return the<Data> element containing the1142
remaining and thenextOffset XML attributes even, when no actual data is returned (see processing rules1143
related to pagination later on).1144

2. If the <Select>requests multiple data elements, the WSP MUST return all of those data elements inside the1145
<Data> element corresponding to the containing<QueryItem>.1146

4.4.3. Sorting Query Results1147

1.When the<Sort> element is included in a<QueryItem> element, the data returned inside a<Data> element1148
SHOULD be sorted according to the criteria given in the<Sort> element. If a WSP doesn’t support sorting, it1149
SHOULD return the requested data unsorted. When the data is returned unsorted, thenotSorted XML attribute1150
MUST be used in the<Data> element containing the unsorted data. A WSP MAY also choose to fail to process1151
the<QueryItem>, if it does not support sorting. In that case the second level status codeSortNotSupported1152
SHOULD be used in addition to the top level status code. A WSP may also register discovery option keyword1153
urn:liberty:dst:noSorting, if the sorting has been specified for the service type, but the WSP doesn’t support it.1154

2. If the content of the<Sort> element is not according to service specifications, a WSP SHOULD return the1155
requested data unsorted. When the data is returned unsorted, thenotSorted XML attribute MUST be used in1156
the<Data> element containing the unsorted data and the second level status codeInvalidSort SHOULD also1157
be used. A WSP MAY also choose to fail to process the<QueryItem>, if the content of the<Sort> element1158
is not according to service specifications. In this kind of a case the second level status codeInvalidSort1159
SHOULD be used in addition to the top level status code. If the content of the<Sort> element is valid, but a1160
WSP does not support the requested type of sorting, it SHOULD return the requested data unsorted. When the1161
data is returned unsorted, thenotSorted XML attribute MUST be used in the<Data> element containing the1162
unsorted data. A WSP MAY also choose to fail to process of the<QueryItem>, if it does not support the1163
requested type of sorting. It SHOULD use the second level status codeRequestedSortingNotSupported in1164
addition to the top level status code.1165

3.When thenotSorted XML attribute is used, it MUST have the valueNow, when a WSP supports sorting, but1166
not the requested type or the content of the<Sort> element was invalid. ThenotSorted XML attribute MUST1167
have the valueNever , when a WSP does not support sorting at all.1168

4.4.4. Pagination of Query Results1169

A WSC may want to receive the data in smaller sets instead of getting all the data at once, when there can be many1170
elements with the same name. A WSC indicates this using either or both of the XML attributescount andoffset1171
in a <QueryItem> element, when the<Select>addresses a set of elements all having the same name. The number of1172
elements inside this set may be restricted further by other parameters. Also access rights and policies may reduce the1173
set of elements a WSC is allowed to get.1174

1.A WSP MUST always follow the same ordering, when the<Select>and<Sort> elements have the same values1175
and either or both of XML attributescount andoffset are used in the<QueryItem> element. If same query1176
is made twice without a modification intervening, the result set MUST be the same and in same order. This is1177
needed to make sure, for example, that a WSC really gets the next ten items, when asking for them, and not e.g.1178
five of the previously returned items with five new items.1179

Liberty Alliance Project

30

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2.When either or both of the XML attributescount andoffset is used in a<QueryItem> element and a WSP1180
doesn’t support pagination, the processing of whole<QueryItem> element MUST fail and the second level1181
status codePaginationNotSupported SHOULD be used in addition to the top level status code. A WSP may1182
support pagination, but not for the requested elements. In such a case the processing of whole<QueryItem>1183
element MUST fail and the second level status codeRequestedPaginationNotSupported SHOULD be used1184
in addition to the top level status code. If a WSP doesn’t support pagination at all, it MAY register the discovery1185
option keyword urn:liberty:dst:noPagination to indicate this.1186

3.When thecount XML attribute is included in a<QueryItem> element, the corresponding<Data> element in1187
the <QueryResponse>MUST NOT contain more elements addressed with the value of the<Select>element1188
than specified by thecount XML attribute. A WSP MAY return a smaller number of elements of the same1189
name that requested by a WSC. If thecount XML attribute has the value zero, the WSP MUST NOT return any1190
data elements inside the<Data> element. Thiscount="0" may be used for querying the number of remaining1191
elements starting from the specified offset, e.g., from offset zero, i.e., the total number of the elements addressed1192
by the<Select>element. When thecount XML attribute is not used in a<QueryItem> element, it means that1193
the WSC requests for all data specified by other parameters like the<Select>element starting from the specified1194
offset. As the default value for theoffset XML attribute is zero, the case when neither of the XML attributes1195
offset or count is not present reduces to a normal query.1196

4.When pagination is requested by a WSC, the elements inside a<Data> element MUST be in the ascending1197
order of their offsets. The first element MUST have the offset specified by theoffset XML attribute in the1198
<QueryItem> element. The<Data> element MUST have both XML attributesnextOffset andremaining .1199
ThenextOffset XML attribute MUST have the offset of the first element not returned in the response. The1200
value of theremaining XML attribute MUST define how many elements there are left starting from the value of1201
thenextOffset , if a WSP knows that (e.g., that information might not be available from a backend system). If1202
WSP does not know the exact value, it MUST use the value-1 for theremaining XML attribute until it knows1203
the value or there is no data left (remaining="0"). Whenremaining="-1" , a WSC must make new requests1204
until remaining="0" , if it wants to get all the data.1205

5.Usually, when there is no data matching the different query parameters, no<Data> element is returned in a1206
<QueryResponse>. When either or both of thecount andoffset attributes are used, the<Data> element1207
MUST be returned, even, when no data is returned (e.g., no data available orcount="0" used to get the number1208
of data items). This is required so that a WSP can return theremaining and thenextOffset XML attributes1209
to the requesting WSC.1210

6.When thesetReq XML attribute is included in a<QueryItem> element and has the valueStatic , the WSP1211
SHOULD return thesetID XML attribute to the requesting WSC and process<QueryItem> elements later1212
having thissetID based on the data the WSP has at the time, when the value for thesetID was created. If1213
a WSP receives a<QueryItem> element having thesetReq XML attribute and does not support static sets for1214
the requested data or not at all, the processing of the<QueryItem> element MUST fail and a second level status1215
codeStaticNotSupported SHOULD be used in addition to the top level status code. If a WSP doesn’t support1216
static sets at all, it MAY register the discovery option keyword urn:liberty:dst:noStatic.1217

7.When thesetID XML attribute is included in a request, the following parameters MUST NOT be used in1218
a <QueryItem> element: the<Select>element, the<Sort> element, thechangedSince XML attribute, the1219
includeCommonXML Attributes XML attribute, or thepredefined XML attribute. The requests are made1220
from an earlier defined static set and thecount and theoffset XML attributes are used to define, what is1221
requested from that set. If any of the mentioned parameters is present, when thesetID XML attribute is used,1222
it is unclear what a WSC wants and the processing of the whole<QueryItem> MUST fail and a second level1223
status codeSetOrNewQuery SHOULD be used in addition to the top level status code.1224

8.When thesetID XML attribute is included in a<QueryItem> element and has a valid value, the<Data>element1225
in the response MUST always have thesetID XML attribute.1226

Liberty Alliance Project

31

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

9.When a static set is created, the requesting WSC SHOULD query all the data it needs from this set as soon as1227
possible and delete the static set immediately after this usingsetReq="DeleteSet" . A WSP MAY also delete1228
the static set, even if a WSC hasn’t yet requested the deletion of the static set. If a WSC tries to make a request to1229
a non-existing static set, the processing of the whole<QueryItem> MUST fail and the second level status code1230
InvalidSetID SHOULD be used in addition to the top level status code.1231

10.ThesetReq="Static" and thesetID XML attribute MUST NOT be used simultaneously in a<QueryItem>1232
element. If they are used, the WSP MUST ignore thesetReq="Static" and process the<QueryItem> element1233
like thesetReq XML attribute would not be present.1234

11.If the setReq XML attribute has some other value thanStatic or DeleteSet , the processing of the whole1235
<QueryItem> element must fail and a second level status codeInvalidSetReq SHOULD be used in addition1236
to the top level status code.1237

4.4.5. Effect of Access and Privacy Policies1238

Even when the requested data exists, it should be noted that access and privacy policies specified by the resource owner1239
may cause the request to result in data not being returned to the requestor.1240

When a WSP processes a<QueryItem>, it MUST check whether the resource owner (the Principal, for example) has1241
given consent to return the requested information. To be able to check WSC specific access rights, the WSP MUST1242
authenticate the WSC (see [LibertySecMech]). The WSP MUST also check that any usage directive given in the1243
request is acceptable based on the usage directives defined by the resource owner (see [LibertySOAPBinding]). If1244
either check fails for any piece of the requested data, the WSP MUST NOT return that piece of data. Note that there1245
can be consent for returning some data element, but not its XML attributes. For example, a resource owner might not1246
want to release themodifier XML attribute, if she does not want to reveal information about which services she uses.1247
The data for which there is no consent from the resource owner MUST be handled as if there was no data. The WSP1248
MAY try to get consent from the resource owner while processing the request, e.g., by using an interaction service,1249
see [LibertyInteract]. A WSP might check the access rights and policies in usage directives at a higher level, before1250
getting to DST processing and MAY, in this case, just return an ID-* Fault Message [LibertySOAPBinding] without1251
processing the<Query> element at all, if the requesting WSC is not allowed to access the data.1252

4.4.6. Querying Changes Since Specified Time1253

It is possible to query changes since a specified time using thechangedSince XML attribute.1254

1. If the <QueryItem> element contains thechangedSince XML attribute, the WSP SHOULD return only those1255
elements addressed by the<Select>which have been modified since the time specified in thechangedSince1256
XML attribute. There are two different formats, in which the changed data can be returned. A WSC SHOULD1257
indicate using the<ChangeFormat>element the format it prefers and also, if it understands the other format.1258
The two formats areChangedElements and CurrentElements . If a service specification doesn’t specify1259
anything else the valueChangedElements MUST be used as a default value as it is compatible with the format1260
used in the version 1.0 of the Data Services Template.1261

2.A WSP MUST ignore the<ChangeFormat>element, if thechangedSince XML attribute is not used in the1262
same<QueryItem> element. A WSP MUST NOT use a format, which a WSC does not understand. Note that1263
formatChangedElements , has the formatAll as a fallback solution, when a WSP doesn’t have all the needed1264
change history information. Also if a WSP doesn’t support requesting only changed data, it returns all data.1265

3.A <QueryItem> element MAY contain two<ChangeFormat>element with different values. A WSP SHOULD1266
use the format specified by the first<ChangeFormat>element, but, if it does not support that format, it MAY1267
use the format specified by the second<ChangeFormat>element.1268

Liberty Alliance Project

32

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

4. If a WSP does not support the format a WSC is requesting to be used, the processing of the<QueryItem> MUST1269
fail and the second level status codeFormatNotSupported SHOULD be used in addition to the top level status1270
code.1271

5. If a WSC requests theChangedElements format and a WSP supports it, the WSP SHOULD return only the1272
changed information. If some element has been deleted, a WSP SHOULD return an empty element to indicate1273
the deletion (<ElementName+/>). The only allowed exception to this is that the WSP does not have enough1274
history information available to be able to return only the changed information. In that case it MUST use format1275
All and return all current elements with their values even if those have not changed since the specified time.1276

6. If a WSC requests theCurrentElements format and a WSP supports it, the WSP SHOULD return only the1277
currently existing elements. It SHOULD return an empty element, if the element has not changed, to indicate that1278
no change has happened (<ElementName/>).1279

N.B. As empty elements are used to indicate either deleted or not changed elements depending on the used format,1280
the formatsCurrentElements andChangedElements do not work well, if the data hosted by a service may1281
contain empty elements. In those cases a service should either use only formatAll or always have some XML1282
attributes for the otherwise empty elements.1283

7. If a WSC has used the<ChangeFormat>element in a request, a WSP MUST use thechangeFormat XML1284
attribute in the response to indicate, which format is used. A WSP MUST not use thechangeFormat XML1285
attribute in a response, if the<ChangeFormat> element was not used in the corresponding request so the1286
processing stays version 1.0 compatible, when the<ChangeFormat>element is not used.1287

8. If there can be multiple elements with same name, theid XML attribute or some other XML attribute used to1288
distinguish the elements from each other MUST be included (e.g., in case of an ID-SIS Personal Profile service1289
the following empty element could be returned<AddressCard id="tr7632q"/> to indicate a deleted or not1290
changed<AddressCard> depending on the used format). If the value of theid XML attribute or some other1291
XML attribute used for distinguishing elements with same name is changed, the WSP MUST consider this as a1292
case, in which the element with the original value of the distinguishing XML attribute is deleted and a new one1293
with the new value of the distinguishing XML attribute is created. To avoid this, a WSP MAY refuse to accept1294
modifications of a distinguishing XML attribute and MAY require that an explicit deletion of the element is done1295
and a new one created.1296

9. If the elements addressed by the<Select>have some values, but there has been no changes since the time specified1297
in thechangedSince XML attribute, the WSP MUST return empty<Data> element (<Data/>), when it returns1298
the changes properly. This empty<Data>element indicates that no changes have occurred. There might be cases1299
in which the WSP is not able to return changes properly, see later processing rules. Please note that in cases that1300
have no values, no<Data>element is returned to indicate this. So empty<Data>element has different semantics1301
than missing<Data> element.1302

10.If the <QueryItem> element contains thechangedSince XML attribute and a WSP is not keeping track of1303
modification times, it SHOULD process the<QueryItem> element as there would be nochangedSince XML1304
attribute, and indicate this in the response using the second level status codeChangedSinceReturnsAll . This1305
is not considered a failure and the rest of the<QueryItem> elements MUST be processed. Also it might be1306
that a WSP does not have a full change history and so for some queries, it is not possible to find out, which1307
changes occurred after the specified time. As processing with access rights and policy in place might be quite1308
complex, a WSP might sometimes process the query for changes properly and sometime process it as if there1309
were nochangedSince XML attribute. In those cases, when a WSP returns all current values, it SHOULD1310
indicate this with the second level status codeAllReturned and, if the<ChangeFormat>element was used1311
in the request, thechangeFormat XML attribute with the valueAll SHOULD be used. This is also not1312
considered a failure and the rest of the<QueryItem> elements MUST be processed. Please note that the status1313
codeAllReturned differs from the status codeChangedSinceReturnsAll , asChangedSinceReturnsAll1314
means that the WSP never processes thechangedSince XML attribute properly. A WSP MUST use either1315
AllReturned or ChangedSinceReturnsAll as the second level status code, when it returns data, but does1316

Liberty Alliance Project

33

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

not process thechangedSince XML attribute properly, i.e., returns only the changes. If a WSP will not process1317
the <QueryItem> elements with achangedSince XML attribute at all, it MUST indicate this with top level1318
status codeFailed and SHOULD also return a second level status code ofChangeHistoryNotSupported1319
in the response. In this case a WSP MUST NOT return any<Data> element for the<QueryItem> element1320
containing thechangedSince XML attribute. If a WSP processes thechangedSince XML attribute, it1321
MUST also support thenotChangedSince XML attribute for <ModifyItem> element and MAY register the1322
urn:liberty:dst:changeHistorySupported discovery option keyword. Please note that still in some cases a WSP1323
MAY return AllReturned .1324

11.Access rights and policies in place may affect how the queries for changes can work as they affect which elements1325
and XML attributes a WSC is allowed to see. If a WSC was originally allowed to get the requested data, but is1326
no longer after some change in access policies, then from its point of view that data is deleted and that should1327
be taken into account in the response. If the WSP notices that access rights have changed, and the current rights1328
do not allow access, it MUST return all data except the data for which the access rights were revoked, and use1329
the second level status codeAllReturned and, if the<ChangeFormat>element was used in the request, the1330
changeFormat XML attribute with the valueAll SHOULD be used. The WSP MUST NOT return empty1331
elements for the data for which access rights were changed even if the formatChangedElement was requested,1332
as this might reveal the fact that this specific data has at least existed at the service in some point of time. Please1333
note that it might be the case that the data was added after the WSCs access rights were revoked and the WSC was1334
never supposed to be aware of the existence of that data. If the WSP notices that the access rights are changed1335
and the current rights do allow access, it MUST consider the data for which the access rights are changed, as if it1336
were just created.1337

12.Both the WSC and WSP may have policies specified by the Principal for control of their data. Only by comparing1338
policy statements made by the WSC (via<UsageDirective>elements (see [LibertySOAPBinding]) with policies1339
maintained on behalf of the Principal by the WSP it is possible to fully determine the effects of interaction1340
between these sets of policies. As it might be too expensive to search for policies the WSC promised to honor1341
when it made the original request, and this information might not even be available, the WSP might be only1342
capable of making the decision based on the policy changes made by the Principal. If some data is prevented1343
from being returned to the WSC due to conflicts in policies and the WSP notices that the Principal’s policies have1344
changed, it MUST return all data except that for which the Principal’s policy has denied access against the current1345
policy of a requesting WSC, and use the second level status codeAllReturned to indicate that the WSC must1346
check the response carefully to find out what has changed. Also if the<ChangeFormat>element was used in the1347
request, thechangeFormat XML attribute with the valueAll SHOULD be used. The WSP MUST NOT return1348
empty elements for the data for which the Principal’s policy was changed even if the formatChangedElements1349
was requested, as this might reveal the fact that this specific data was exposed by the service at some point in1350
time. Please note that it might be the case that that data has been added after the policies were changed and the1351
requesting WSC was never supposed to be aware of that data, unless it changed the policy it promises to honor.1352
If the WSP notices that the Principal’s policy has changed and the current policy does allow access, it MUST1353
consider the data for which the policy is changed as if it had been just created. If a WSC changes the policy it1354
promises to honor, it SHOULD make a new query without achangedSince XML attribute.1355

13.As mentioned earlier, the WSP might in some cases return all the current data the<Select>points to, and not just1356
the changes using specified format, even when thechangedSince XML attribute is present. So the WSC MUST1357
compare the returned data to previous data it had queried earlier to find out what really has changed. Note that1358
this MUST be done even when the WSP has processed thechangedSince correctly, because some values might1359
have been changed back and forth and now they have same values that they used to have earlier, despite the most1360
current previous values being different.1361

4.4.7. Requesting Common XML Attributes1362

The common XML attributes are not always returned. A WSC may indicate with theincludeCommonAttributes1363
XML attribute, whether it wants to have the common XML attributes or not.1364

Liberty Alliance Project

34

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1. If the includeCommonAttributes is set to True, the common XML attributes specified by XML at-1365
tribute groupscommonAttributes and leafAttributes MUST be included in the response, if their val-1366
ues are specified for the requested data elements. TheACCXML attributes MAY be left out, if the value is1367
urn:liberty:dst:acc:unknown.1368

2. If the id XML attribute is used for distinguishing similar elements from each other by the service, it MUST be1369
returned, even if theincludeCommonAttributes is false. Also, when either or both of the XML attributes1370
xml:lang andscript are present, they MUST be returned, even if theincludeCommonAttributes is false1371

4.5. Examples1372

The following query example, based on hypothetical profile service, requests the common name and home address of1373
a Principal:1374

<hp:Query xmlns:hp="urn:liberty:hp:2005-07">1375
<hp:QueryItem itemID="name">1376

<hp:Select>/hp:HP/hp:CommonName</hp:Select>1377
</hp:QueryItem>1378
<hp:QueryItem itemID="home">1379

<hp:Select>1380
/hp:HP/hp:AddressCard1381

[hp:AddressType="urn:liberty:id-sis-hp:a ddrType:home"]1382
</hp:Select>1383

</hp:QueryItem>1384
</hp:Query>1385

1386
1387

This query may generate the following response:1388

<hp:QueryResponse xmlns:hp="urn:liberty:hp:2005-07">1389
<hp:Status code="OK"/>1390
<hp:Data itemIDRef="name">1391

<hp:CommonName>1392
<hp:CN>Zita Lopes</hp:CN>1393

<hp:AnalyzedName nameScheme="firstlast">1394
<hp:FN>Zita</hp:FN>1395
<hp:SN>Lopes</hp:SN>1396
<hp:PersonalTitle>Dr.</hp:PersonalTitle>1397

</hp:AnalyzedName>1398
<hp:AltCN>Maria Lopes</hp:AltCN>1399
<hp:AltCN>Zita Maria Lopes</hp:AltCN>1400

</hp:CommonName>1401
</hp:Data>1402
<hp:Data itemIDRef="home">1403

<hp:AddressCard id=’9812’>1404
<hp:AddressType>1405

urn:liberty:id-sis-hp:addrType:hom e1406
</hp:AddressType>1407
<hp:Address>1408

<hp:PostalAddress>1409
c/o Carolyn Lewis$2378 Madrona Beach Way North1410

</hp:PostalAddress>1411
<hp:PostalCode>98503-2341</hp:PostalCode>1412
<hp:L>Olympia</hp:L>1413
<hp:ST>wa</hp:ST>1414
<hp:C>us</hp:C>1415

</hp:Address>1416
</hp:AddressCard>1417

</hp:Data>1418
</hp:QueryResponse>1419

1420
1421
1422

Liberty Alliance Project

35

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

If there was no user consent for the release of the<hp:CommonName>or for the whole<hp:AddressCard> with1423
[hp:AddressType="urn:liberty:id-sis-hp:addrType:home"] , apart from the country information, then1424
the response is as follows (including a timestamp, as this service supports change history):1425

<hp:QueryResponse1426
xmlns:hp="urn:liberty:hp:2005 -07"1427
timeStamp="2003-02-28T12:10:12Z">1428

<hp:Status code="OK"/>1429
<hp:Data itemIDRef="home">1430

<hp:AddressCard id=’9812’>1431
<hp:AddressType>1432

urn:liberty:id-sis-hp:addrType :home1433
</hp:AddressType>1434
<hp:Address><hp:C>us</hp:C></hp:Address>1435

</hp:AddressCard>1436
</hp:Data>1437

</hp:QueryResponse>1438
1439
1440

If there was no<hp:CommonName>and no<hp:AddressCard> with [hp:AddressType="urn:liberty:id-1441
sis-hp:addrType:home"] , then the response is:1442

<hp:QueryResponse1443
xmlns:hp="urn:liberty:hp:2005 -07"1444
timeStamp="2003-02-28T12:10:12Z">1445

<hp:Status code="OK"/>1446
</hp:QueryResponse>1447

1448
1449

The following request queries the fiscal identification number of the Principal with the common XML attributes:1450

<hp:Query xmlns:hp="urn:liberty:hp:2005-07">1451
<hp:QueryItem includeCommonAttributes="True">1452

<hp:Select>/hp:HP/hp:LegalIdentity/hp: VAT</hp:Select>1453
</hp:QueryItem>1454

</hp:Query>1455
1456
1457

This query may generate the following response:1458

<hp:QueryResponse1459
xmlns:hp="urn:liberty:hp:2005 -07"1460
id="12345"1461
timeStamp="2003-05-28T23:10:12 Z">1462

<hp:Status code="OK"/>1463
<hp:Data>1464

<hp:VAT1465
modifier="http://www.accountingservices.com"1466
modificationTime="2003-04-25T15:42:11Z"1467
ACC="urn:liberty:dst:acc:secondarydocuments">1468

<hp:IDValue1469
modifier="http://www.accountingserv ices.com"1470
modificationTime="2003-04-25T15:42:1 1Z"1471
ACC="urn:liberty:dst:acc:secondarydocumen ts">1472

5026771231473
</hp:IDValue>1474
<hp:IDType1475

modifier="http://www.accountingservices .com"1476
modificationTime="2003-03-12T09:12:09Z"1477
ACC="urn:liberty:dst:acc:secondarydocuments">1478

urn:liberty:altIDType:itcif1479
</hp:IDType>1480

</hp:VAT>1481

Liberty Alliance Project

36

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

</hp:Data>1482
</hp:QueryResponse>1483
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xml dsig#">1484

. . .1485
</ds:Signature>1486

1487
1488

The following request queries for address information which has been changed since 12:10:12 28 February 2003 UTC:1489

<hp:Query xmlns:hp="urn:liberty:hp:2005-07">1490
<hp:QueryItem changedSince="2003-02-28T12:10:12Z">1491

<hp:Select>/hp:HP/hp:AddressCar d</hp:Select>1492
</hp:QueryItem>1493

</hp:Query>1494
1495
1496

This query can generate following response:1497

<hp:QueryResponse1498
xmlns:hp="urn:liberty:hp:2005 -07"1499
timeStamp="2003-05-30T16:10:12Z">1500

<hp:Status code="OK"/>1501
<hp:Data>1502

<hp:AddressCard id=’9812’>1503
<hp:Address>1504

<hp:PostalAddress>1505
2891 Madrona Beach Way North1506

</hp:PostalAddress>1507
</hp:Address>1508

</hp:AddressCard>1509
<hp:AddressCard id=’w1q2’/>1510

</hp:Data>1511
</hp:QueryResponse>1512

1513
1514

Please note that only the changed information inside the<hp:AddressCard> is returned. The response shows that1515
after the specified time, there was also another<hp:AddressCard> present, but that has been deleted. As there can1516
be many<hp:AddressCard> elements, theid XML attribute is returned to distinguish distinct elements.1517

If there have been no changes since the specified time, then the response is just:1518

<hp:QueryResponse1519
xmlns:hp="urn:liberty:hp:2005 -07"1520
timeStamp="2003-05-30T16:10:12Z">1521

<hp:Status code="OK"/>1522
<hp:Data/>1523

</hp:QueryResponse>1524
1525
1526

If the same request for changed addresses is made including the<hp:ChangeFormat>element:1527

<hp:Query xmlns:hp="urn:liberty:hp:2005-07">1528
<hp:QueryItem changedSince="2003-02-28T12:10:12Z">1529

<hp:Select>/hp:HP/hp:AddressC ard</hp:Select>1530
<hp:ChangeFormat>CurrentElements</ hp:ChangeFormat>1531

</hp:QueryItem>1532
</hp:Query>1533

1534
1535

All the current elements are returned in the response:1536

Liberty Alliance Project

37

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<hp:QueryResponse1537
xmlns:hp="urn:liberty:hp:2005 -07"1538
timeStamp="2003-05-30T16:10:12Z">1539

<hp:Status code="OK"/>1540
<hp:Data changeFormat="CurrentElements">1541

<hp:AddressCard id=’9812’>1542
<hp:Address>1543

<hp:PostalAddress>2891 Madrona Beach Way North</hp:PostalAddress>1544
<hp:PostalCode/>1545
<hp:L/>1546
<hp:ST/>1547
<hp:C/>1548

</hp:Address>1549
</hp:AddressCard>1550

</hp:Data>1551
</hp:QueryResponse>1552

1553
1554

Please note that now all the current elements inside the<hp:AddressCard> are returned. The deleted1555
<hp:AddressCard> is not shown at all and for the elements, which have not changed - only empty elements1556
are returned.1557

If a WSP does not support change history, then the response could be:1558

<hp:QueryResponse1559
xmlns:hp="urn:liberty:hp:2005 -07"1560
timeStamp="2003-05-30T16:10:12Z">1561

<hp:Status code="OK">1562
<Status code="ChangeSinceReturnsAll"/>1563

</hp:Status>1564
<hp:Data changeFormat="All">1565

<hp:AddressCard id=’9812’>1566
<hp:AddressType>urn:liberty:id-sis-hp:addrType:home< /hp:AddressType>1567
<hp:Address>1568

<hp:PostalAddress>2891 Madrona Beach Way North</hp:PostalAddress>1569
<hp:PostalCode>98503-2341</hp:PostalCode>1570
<hp:L>Olympia</hp:L>1571
<hp:ST>wa</hp:ST>1572
<hp:C>us</hp:C>1573

</hp:Address>1574
</hp:AddressCard>1575

</hp:Data>1576
</hp:QueryResponse>1577

1578
1579

The rest of the examples are related to pagination and sorting based on fictional address service, so all the DST1580
elements in the namespace of that fictional address service.1581

Parameters<Select>and<Sort> and returned<Data> elements do not have valid contents in the examples as the1582
main point is to show the principle how pagination works and the use of the pagination related XML attributes1583

A Resource contains 40 address cards and the WSC A wants to list those ordered by the City and 10 at the time. Due1584
to access rights and policies the WSC A is allowed to get only 30 of those AddressCards. The WSC A makes the first1585
query:1586

<ads:Query xmlns:ads="http://www.example.com/2010/12/Ad dr">1587
<ads:QueryItem count="10">1588

<ads:Select>Pointing to the AddressCards</ads:Select>1589
<ads:Sort>Requesting sorting by the City</ads:Sort>1590

</ads:QueryItem>1591
</ads:Query>1592

Liberty Alliance Project

38

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1593
1594

and gets back the first ten address cards ordered by the City:1595

<ads:QueryResponse1596
xmlns:ads="http://www.example. com/2010/12/Addr"1597
timeStamp="2004-03-23T03:40:00Z">1598

<ads:Status code="OK"/>1599
<ads:Data remaining="20" nextOffset="10">first ten address cards</ads:Data>1600

</ads:QueryResponse>1601
1602
1603

Then it queries the next ten starting from offset 10:1604

<ads:Query xmlns:ads="http://www.example.com/2010/12/Ad dr">1605
<ads:QueryItem count="10" offset="10">1606

<ads:Select>Pointing to the AddressCards</ads:Select>1607
<ads:Sort>Requesting sorting by the City</ads:Sort>1608

</ads:QueryItem>1609
</ads:Query>1610

1611
1612

and gets those1613

<ads:QueryResponse1614
xmlns:ads="http://www.example. com/2010/12/Addr"1615
timeStamp="2004-03-23T03:40:20Z">1616

<ads:Status code="OK"/>1617
<ads:Data remaining="10" nextOffset="20">next ten address cards</ads:Data>1618

</ads:QueryResponse>1619
1620
1621

After this the WSC B adds one more address card to the resource. The WSC A is allowed to get this address card, but1622
when sorting based on the City, this new card has the offset 15. When the WSC A fetches the next ten address cards:1623

<ads:Query xmlns:ads="http://www.example.com/2010/12/Ad dr">1624
<ads:QueryItem count="10" offset="20">1625

<ads:Select>Pointing to the AddressCards</ads:Select>1626
<ads:Sort>Requesting sorting by the City</ads:Sort>1627

</ads:QueryItem>1628
</ads:Query>1629

1630
1631

It gets ten address cards, but it has already received the first address card already in the previous response.1632

<ads:QueryResponse1633
xmlns:ads="http://www.example. com/2010/12/Addr"1634
timeStamp="2004-03-23T03:41:00Z">1635

<ads:Status code="OK"/>1636
<ads:Data remaining="1" nextOffset="30">next ten address cards</ads:Data>1637

</ads:QueryResponse>1638
1639
1640

Finally the WSC A fetches the last address card.1641

<ads:Query xmlns:ads="http://www.example.com/2010/12/Ad dr">1642
<ads:QueryItem count="1" offset="30">1643

<ads:Select>Pointing to the AddressCards</ads:Select>1644
<ads:Sort>Requesting sorting by the City</ads:Sort>1645

Liberty Alliance Project

39

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

</ads:QueryItem>1646
</ads:Query>1647

1648
1649

and gets the 31st address card from offset 30.1650

<ads:QueryResponse1651
xmlns:ads="http://www.example. com/2010/12/Addr"1652
timeStamp="2004-03-23T03:41:17Z">1653

<ads:Status code="OK"/>1654
<ads:Data remaining="0" nextOffset="31">the last address card</ads:Data>1655

</ads:QueryResponse>1656
1657
1658

So the WSC A didn’t get this new address card added by the WSC B and got one card twice.1659

In an alternative scenario, if supported by the WSP, the WSC A requests a static set to be created so that simultaneous1660
modifications can not affect the results the WSC A gets. The initial request includes thesetReq XML attribute:1661

<ads:Query xmlns:ads="http://www.example.com/2010/12/Ad dr">1662
<ads:QueryItem count="10" setReq="Static">1663

<ads:Select>Pointing to the AddressCards</ads:Select>1664
<ads:Sort>Requesting sorting by the City</ads:Sort>1665

</ads:QueryItem>1666
</ads:Query>1667

1668
1669

In the response the first ten address cards are returned together with a handle to this static set (the XML attribute1670
setID).1671

<ads:QueryResponse1672
xmlns:ads="http://www.example. com/2010/12/Addr"1673
timeStamp="2004-03-23T03:40:00Z">1674

<ads:Status code="OK"/>1675
<ads:Data remaining="20" nextOffset="10" setID="gfkjds98">1676

first ten address cards1677
</ads:Data>1678

</ads:QueryResponse>1679
1680
1681

In the next query the WSC A queries the next ten address card referring to the static set using thesetID XML attribute.1682
The<Select>element is not anymore used.1683

<ads:Query xmlns:ads="http://www.example.com/2010/12/Ad dr">1684
<ads:QueryItem count="10" offset="10" setID="gfkjds98"/>1685

</ads:Query>1686
1687
1688

In the response the next ten address cards are returned and thesetID is still returned as always when accessing a static1689
set.1690

<ads:QueryResponse1691
xmlns:ads="http://www.example. com/2010/12/Addr"1692
timeStamp="2004-03-23T03:40:00Z">1693

<ads:Status code="OK"/>1694
<ads:Data remaining="10" nextOffset="20" setID="gfkjds98">1695

next ten address cards1696
</ads:Data>1697

</ads:QueryResponse>1698

Liberty Alliance Project

40

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1699
1700

When the WSC B tries to add a new address card, it doesn’t affect the data the WSC A gets, when requesting the next1701
ten address cards.1702

<ads:Query xmlns:ads="http://www.example.com/2010/12/Ad dr">1703
<ads:QueryItem count="10" offset="20" setID="gfkjds98"/>1704

</ads:Query>1705
1706
1707

So the WSC A gets the last ten address card.1708

<ads:QueryResponse1709
xmlns:ads="http://www.example. com/2010/12/Addr"1710
timeStamp="2004-03-23T03:40:00Z">1711

<ads:Status code="OK"/>1712
<ads:Data remaining="0" nextOffset="30" setID="gfkjds98">1713

... next ten address cards ...1714
</ads:Data>1715

</ads:QueryResponse>1716
1717
1718

Finally the WSC A deletes the static set. This deletion could have been done together with the previous request, but1719
the WSC wanted to play safe and delete the static set only after getting all the data it wanted.1720

<ads:Query xmlns:ads="http://www.example.com/2010/12/Ad dr">1721
<ads:QueryItem count="0" setID="gfkjds98" setReq="DeleteSet"/>1722

</ads:Query>1723
1724
1725

And the WSP acknowledges the request.1726

<ads:QueryResponse1727
xmlns:ads="http://www.example. com/2010/12/Addr"1728
timeStamp="2004-03-23T03:40:00Z">1729

<ads:Status code="OK"/>1730
</ads:QueryResponse>1731

1732
1733

So the addition the WSC B tried to make is not visible in the static set. Either the WSP refused to accept the addition1734
while WSC A was accessing the data or it created a temporary set for the WSC A to access and the modification by the1735
WSC B was accepted, but not visible in the temporary static set created for WSC A. In the example above the WSP1736
created a temporary set an so returned the same time stamp in all responses containing data from that temporary set.1737

Liberty Alliance Project

41

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

5. Creating Data Objects1738

A WSC can create new data objects to a resource when a service type supports multiple objects of the same type. If1739
there is only one object of a type, that object exists always, when a resource containing it exists. The data objects can1740
later be modified and deleted.1741

5.1. <Create> Element1742

The<Create> element is used to create new data objects, not new data inside existing data objects. The content of1743
a data object is created, deleted and modified using the<Modify> . The right resource, to which a new data object1744
is added, is selected using security mechanism and possibly<TargetIdentity> header. The<CreateItem> element1745
specifies the type of the new object (theobjectType XML attribute) and initial content for the new object (inside the1746
<NewData>element). The<NewData>MAY contain some local addressing element that further qualifies the object1747
that is being created. For example, when adding an address card, service specification may specify an address card1748
identifier that differentiates the object from other similar objects (or this identifier may be assigned automatically by1749
the service, in which case the<ResultQuery>may come handy to discover which identifier was assigned).1750

<xs:attributeGroup name="CreateItemAttributeGroup">1751
<xs:attribute ref="dst:objectType" use="optional"/>1752
<xs:attribute name="id" use="optional" type="xs:ID"/>1753
<xs:attribute ref="lu:itemID" use="optional"/>1754

</xs:attributeGroup>1755

Figure 12. XML Attributes for CreateItem1756

<xs:complexType name="CreateType">1757
<xs:complexContent>1758

<xs:extension base="dst:RequestType">1759
<xs:sequence>1760

<xs:element ref="dstref:CreateItem" minOccurs="1" maxOccurs="unbounded"/>1761
<xs:element ref="dstref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>1762

</xs:sequence>1763
</xs:extension>1764

</xs:complexContent>1765
</xs:complexType>1766
<xs:element name="CreateItem" type="dstref:CreateItemType"/>1767
<xs:complexType name="CreateItemType">1768

<xs:sequence>1769
<xs:element ref="dstref:NewData" minOccurs="0" maxOccurs="1"/>1770

</xs:sequence>1771
<xs:attributeGroup ref="dst:CreateItemAttributeGroup"/>1772

</xs:complexType>1773
<xs:element name="NewData" type="dstref:AppDataType"/>1774
<xs:complexType name="CreateResponseType">1775

<xs:complexContent>1776
<xs:extension base="dstref:DataResponseType"/>1777

</xs:complexContent>1778
</xs:complexType>1779
<xs:complexType name="DataResponseType">1780

<xs:complexContent>1781
<xs:extension base="dst:DataResponseBaseType">1782

<xs:sequence>1783
<xs:element ref="dstref:ItemData" minOccurs="0" maxOccurs="unbounded"/>1784

</xs:sequence>1785
</xs:extension>1786

</xs:complexContent>1787
</xs:complexType>1788

Figure 13. Reference Model for Create1789

Liberty Alliance Project

42

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

5.2. <CreateResponse> Element1790

The <CreateResponse>element contains in addition to the mandatory<Status> element possible<ItemData>1791
elements, which carry requested data related to the data just created. For example, returned data could include a1792
unique ID assigned to the data object just created.1793

5.3. Processing Rules for Creating Data Objects1794

The common processing rules specified earlier MUST also be followed (seeSection 3).1795

5.3.1. Multiple <CreateItem> Elements1796

One<Create>element can contain multiple<CreateItem> elements. The following rules specify how those must be1797
supported and handled:1798

1.A WSP MUST support one<CreateItem>element inside a<Create>and SHOULD support multiple. If a WSP1799
supports only one<CreateItem> element inside a<Create>and the<Create>contains multiple<CreateItem>1800
elements, the processing of the whole<Create>MUST fail and a status code indicating failure MUST be returned1801
in the response. A more detailed status code with the valueNoMultipleAllowed SHOULD be used in addition1802
to the top level status code. If a WSP supports multiple<CreateItem> elements inside a<Create>, it MAY1803
register the urn:liberty:dst:multipleCreateItems discovery option keyword.1804

2. If the processing of a<CreateItem> fails even partly due to some reason, depending on the service and/or a1805
WSP either the processing of the whole<Create> MUST fail or a WSP MUST try to achieve partial success.1806
The top level status codeFailed or Partial MUST be used to indicate the failure (complete or partial) and a1807
more detailed second level status code SHOULD be used to indicate the reason for failing to completely process1808
the failed<Create>element. Furthermore, theref XML attribute of the<Status>element SHOULD carry the1809
value of theitemID of the failed<CreateItem> element and in partial success cases it MUST carry this value.1810
The modifications made based on already processed<CreateItem> elements of the<Create> MUST be rolled1811
back in case of a complete failure. A WSP MUST NOT support multiple<CreateItem> elements inside one1812
<Create>, if it cannot roll back and partial failure is not allowed.1813

3.When multiple<CreateItem> elements inside one<Create> element are supported and partial success is1814
allowed, a WSC MUST use theitemID XML attribute in each<CreateItem> element so that a WSP can1815
identify the failed parts, when it is returning status information for a partial success.1816

5.3.2. Only One Type of Data Object per <CreateItem>1817

With one<CreateItem> element a WSC can add only one type of data objects, but the amount of object may vary.1818

1.A WSP MUST support multiple data objects of the same type inside the<NewData>element of a<CreateItem>1819
element, if the service can have multiple objects of that type, unless otherwise specified in a service specification.1820
If a data object inside a<NewData> element is not of the type specified by theobjectType XML attribute1821
of the <CreateItem> containing the<NewData> element, the processing of that<CreateItem> MUST fail1822
and second level status codeObjectTypeMismatch SHOULD be used. If the data inside a<NewData> is1823
otherwise unacceptable to a WSP, the processing of the<CreateItem> MUST fail and second level status code1824
InvalidData SHOULD be used unless some better service or object type specific status code has been defined1825
in the service specification or in this specification. A data object might contain an<Extension>element, which1826
has some data not specified in the service specification. A WSP might not support extensions and not accept that1827
data. This SHOULD be indicated with the second level status codeExtensionNotSupported .1828

Liberty Alliance Project

43

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2. If there is no<NewData> element inside a<CreateItem>, an empty data object of the type specified by the1829
objectType XML attribute MUST be created unless service specification requires that a object always has1830
some data, e.g., an identifier created by a WSC to be used to access that specific object instead of other objects1831
of the same type. If a<NewData>element is required inside a<CreateItem> element and it is missing, the1832
processing of that<CreateItem> MUST fail and second level status codeMissingNewData should be used to1833
indicate this.1834

5.3.3. Handling commonAttributes and leafAttributes upon Creation1835

The common XML attributes belonging to the XML attribute groupscommonAttributes andleafAttributes are1836
mainly supposed to be written by the WSP hosting the data service. There are some additional rules for handling these1837
common XML attributes when data objects are created.1838

1.When any of theACC, modifier , ACCTime or modificationTime XML attributes is used in a resource, the1839
WSP hosting the data service MUST keep their values up to date. When a data object is created, themodifier1840
XML attribute MUST contain the ProviderID of the creator or have no value, and themodificationTime1841
MUST define the time of the creation or have no value. TheACCMUST define the XML attribute collection1842
context of the current value of a data element or have no value and theACCTime MUST define the time, when1843
the value of theACCwas defined or have no value.1844

2. If the <NewData>containsmodifier , modificationTime or ACCTimeXML attributes for any data element,1845
the WSP MUST ignore these and update the values based on other information than those XML attributes inside1846
the <NewData> provided by the WSC. If theACCXML attribute is included for any data element, the WSP1847
MAY accept it, depending on how much it trusts the requesting service provider. The WSP MAY also accept the1848
id XML attribute provided inside the<NewData>and some services MAY require that theid XML attribute1849
MUST be provided by the requesting WSC.1850

3.The id XML attribute MUST NOT be used as a global unique identifier. The value MUST be chosen so that it1851
works only as unique identifier inside the conceptual XML document.1852

4.When a data object is created based on a<Create> request, the values of themodificationTime XML1853
attributes written by the WSP hosting the data service MAY be same for all elements of created object, but1854
there is no guarantee that they will be exactly the same. When themodificationTime XML attribute is used1855
in container elements, the time of a modification MUST be propagated to all ancestor elements of the modified1856
element all the way up to the root element. So the root element has always the latest modification time.1857

5.3.4. WSC Might Mot Be Allowed to Add Certain Data or Any Data1858

When a WSP processes a<CreateItem>, it MUST check, whether the resource owner (for example, the Principal)1859
has given consent to the requestor to create the data. To be able to check WSC-specific access rights, the WSP1860
MUST authenticate the WSC (see [LibertySecMech]). If the consent check fails for any part of the requested data, the1861
WSP MUST NOT create data requested in the<CreateItem> element, even when such consent is missing only1862
for some subelement or XML attribute. The WSP MAY try to get consent from the Principal while processing1863
the request perhaps using an interaction service (for more information see [LibertyInteract]). The processing of1864
a <CreateItem> element MUST fail, if the creation of the data object was not allowed. The second level status1865
codeActionNotAuthorized MAY be used, if it is considered that the privacy of the owner of the resource is not1866
compromised. A WSP might check the access rights at a higher level, before getting to DST processing and MAY1867
return an ID-* Fault Message [LibertySOAPBinding] and not process the<Create> element at all, if the requesting1868
WSC is not allowed to create data objects.1869

5.3.5. WSP May Place Some Restrictions for the data It Is Hosting1870

Liberty Alliance Project

44

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1.The schemata for different data services may have some elements for which there is not an exact upper limit1871
on how many can exist. For practical reasons, implementations may set some limits. If a request tries to1872
add more elements than a WSP supports, the WSP will not accept the new element(s) and the processing of1873
the <CreateItem> element MUST fail. The WSP should use a second level status codeNoMoreElements to1874
indicate this specific case. If a WSC tries to add more data object than a WSP supports, the processing of the1875
<CreateItem>element MUST fail and the second level status codeNoMoreObjects to indicate this. If only one1876
data object of the type specified by theobjectType is allowed and a WSC tries to create it although it already1877
exists, the correct second level status code isExistsAlready .1878

2.The schemata for different data services may not specify the length of elements and XML attributes especially1879
in the case of strings. If a request tries to add longer values for data elements or XML attributes than a WSP1880
supports, the WSP may not accept the data and the processing of the<CreateItem> element will fail. The WSP1881
should use a second level status codeDataTooLong to indicate this.1882

Liberty Alliance Project

45

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

6. Deleting Data Objects1883

A WSC can delete existing data objects, when a service supports multiple data objects of the same type.1884

6.1. <Delete> Element1885

The<Delete>element is used to delete existing data objects, not data inside a data object, but whole objects including1886
the contained data. If only the data inside an object should be deleted, a WSC must use<Modify> for it.1887

The data objects to be deleted are referred to either using thepredefined XML attribute or theobjectType1888
XML attribute and the<Select>element in the<DeleteItem> element. Concurrent updates are handled using1889
thenotChangedSince XML attribute inside the<DeleteItem>element. If the data has been modified since the time1890
specified by thenotChangedSince XML attribute, the deletion MUST NOT be done.1891

<xs:complexType name="DeleteItemBaseType">1892
<xs:attributeGroup ref="dst:selectQualif"/>1893
<xs:attribute name="notChangedSince" use="optional" type="xs:dateTime"/>1894
<xs:attribute name="id" use="optional" type="xs:ID"/>1895
<xs:attribute ref="lu:itemID" use="optional"/>1896

</xs:complexType>1897
<xs:complexType name="DeleteResponseType">1898

<xs:complexContent>1899
<xs:extension base="lu:ResponseType"/>1900

</xs:complexContent>1901
</xs:complexType>1902

Figure 14. Utility Schema for Delete1903

<xs:complexType name="DeleteType">1904
<xs:complexContent>1905

<xs:extension base="dst:RequestType">1906
<xs:sequence>1907

<xs:element ref="dstref:DeleteItem" minOccurs="1" maxOccurs="unbounded"/>1908
</xs:sequence>1909

</xs:extension>1910
</xs:complexContent>1911

</xs:complexType>1912
<xs:element name="DeleteItem" type="dstref:DeleteItemType"/>1913
<xs:complexType name="DeleteItemType">1914

<xs:complexContent>1915
<xs:extension base="dst:DeleteItemBaseType">1916

<xs:sequence>1917
<xs:element ref="dstref:Select" minOccurs="0" maxOccurs="1"/>1918

</xs:sequence>1919
</xs:extension>1920

</xs:complexContent>1921
</xs:complexType>1922
<xs:complexType name="DeleteResponseType">1923

<xs:complexContent>1924
<xs:extension base="lu:ResponseType"/>1925

</xs:complexContent>1926
</xs:complexType>1927

Figure 15. Reference Model for Delete1928

6.2. <DeleteResponse> Element1929

The<DeleteResponse>element contains mainly the mandatory<Status>element. No time stamp is returned as the1930
data does not exist after processing the request.1931

Liberty Alliance Project

46

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

6.3. Processing Rules for Deletion1932

The common processing rules specified earlier MUST also be followed (seeSection 3).1933

6.3.1. Supporting Multiple <DeleteItem> Elements1934

One<Delete>element can contain multiple<DeleteItem>elements. The following rules specify how those must be1935
supported and handled:1936

1.A WSP MUST support one<DeleteItem>element inside a<Delete>and SHOULD support multiple. If a WSP1937
supports only one<DeleteItem>element inside a<Delete>and the<Delete>contains multiple<DeleteItem>1938
elements, the processing of the whole<Delete>MUST fail and a status code indicating failure MUST be returned1939
in the response. A more detailed status code with the valueNoMultipleAllowed SHOULD be used in addition1940
to the top level status code. If a WSP supports multiple<DeleteItem> elements inside a<Delete>, it MAY1941
register the urn:liberty:dst:multipleDeleteItems discovery option keyword.1942

2. If the processing of a<DeleteItem>fails even partly due to some reason, depending on the service and/or a WSP1943
either the processing of the whole<Delete>MUST fail or a WSP MUST try to achieve partial success. The top1944
level status codeFailed or Partial MUST be used to indicate the failure (complete or partial) and a more1945
detailed second level status code SHOULD be used to indicate the reason for failing to completely process the1946
failed <Delete>element. Furthermore, theref XML attribute of the<Status>element SHOULD carry the1947
value of theitemID of the failed<DeleteItem>element and in partial success cases it MUST carry this value.1948
The deletions made based on already processed<DeleteItem>elements of the<Delete>MUST be rolled back in1949
case of a complete failure. A WSP MUST NOT support multiple<DeleteItem>elements inside one<Delete>,1950
if it cannot roll back and partial failure is not allowed.1951

3.When multiple<DeleteItem>elements inside one<Delete>element are supported and partial success is allowed,1952
a WSC MUST use theitemID XML attribute in each<DeleteItem>element so that a WSP can identify the failed1953
parts, when it is returning status information for a partial success.1954

6.3.2. Only One Type of Data Object May Be Deleted with One <DeleteItem>1955

With one<DeleteItem>element a WSC can delete only one type of data objects unlesspredefined XML attribute1956
is used, but the amount of object may vary.1957

1.All data objects matching the selection criteria given in a<DeleteItem>, eitherpredefined XML attribute or1958
objectType XML attribute and<Select>element, MUST be deleted. If all matching can not be deleted, the1959
processing of that<DeleteItem>MUST fail and appropriate second level status code should be used to indicate1960
the reason. If a<DeleteItem>fails, a WSP MUST NOT delete any data based on it.1961

2. If there is no<Select>element inside a<DeleteItem>, all data objects of the type specified by theobjectType1962
XML attribute MUST be deleted. A service specification may require that<Select>element is always used, when1963
thepredefined XML attribute is not used.1964

Liberty Alliance Project

47

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

6.3.3. Avoiding Deletion of Data if It Has Changed In-between1965

A WSC might want to avoid deleting data, if someone else has changed it in-between.1966

When thenotChangedSince XML attribute is present, the deletions specified by a<DeleteItem>element MUST1967
NOT be made, if any part of the data to be deleted has changed since the time specified by thenotChangedSince1968
XML attribute. The second level status codeModifiedSince MUST be used to indicate that the deletion was not1969
done because the data has been modified since the time specified by thenotChangedSince XML attribute. If a WSP1970
does not support processing of this XML attribute properly, it MUST NOT make any changes and it MUST return the1971
second level status codeChangeHistoryNotSupported . If a WSP supports thisnotChangedSince XML attribute,1972
it MUST also support thechangedSince XML attribute of the<QueryItem> element andnotChangedSince XML1973
attribute of the<ModifyItem> .1974

6.3.4. WSC Might Not Be Allowed to Delete Certain or Any Data1975

When a WSP processes a<DeleteItem>, it MUST check, whether the resource owner (for example, the Principal)1976
has given consent to the requestor to delete the data. To be able to check WSC-specific access rights, the WSP MUST1977
authenticate the WSC (see [LibertySecMech]). If the consent check fails for any part of the data requested to be1978
deleted, the WSP MUST NOT delete data requested in the<DeleteItem>element, even when such consent is missing1979
only for some subelement or XML attribute. The WSP MAY try to get consent from the Principal while processing1980
the request, for example, using an interaction service (for more information see [LibertyInteract]). The processing1981
of a <DeleteItem> element MUST fail, if the deletion of a data object was not allowed. The second level status1982
codeActionNotAuthorized MAY be used, if it is considered that the privacy of the owner of the resource is not1983
compromised. A WSP might check the access rights at a higher level, before getting to DST processing and MAY1984
return an ID-* Fault Message [LibertySOAPBinding] and not process the<Delete>element at all, if the requesting1985
WSC is not allowed to delete data objects.1986

Liberty Alliance Project

48

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

7. Modifying Data1987

The data objects stored by a data service can be modified. Usually the Principal can make these modifications directly1988
at the data service using the provided user interface, but these modifications may also be made by other service1989
providers using the<Modify> element. It is not possible to create or delete data objects with the<Modify> , just1990
change of existing data objects.1991

7.1. <Modify> Element1992

The<Modify> element has two types of sub-elements.1993

• <ModifyItem> elements specify which data elements of the specified resource should be modified and how.1994

• <ResultQuery> elements can be included, when a WSC wants, for example, to get back data related to the1995
modifications it just made.1996

The objectType XML attribute and the<Select>element inside a<ModifyItem> element specifies the data this1997
modification should affect. The<Select>element is not needed when a resource in a data service has only one data1998
object of the type specified with theobjectType XML attribute and the whole content of that data object is modified.1999
If a data service supports only oneobjectType , this XML attribute may be omitted.2000

The <NewData>subelement of<ModifyItem> defines the new values for the data addressed by theobjectType2001
XML attribute and the<Select>element. The new values, specified inside the<NewData>element, replace any2002
existing selected data, if theoverrideAllowed XML attribute of the<ModifyItem> element is set toTrue .2003

If the <NewData>element does not exist or is empty, it means than the selected current data values should be removed.2004
Note that whole data object can be deleted only with a separate<Delete>message, not with<Modify> . The default2005
value for theoverrideAllowed XML attribute is False , which means that the<ModifyItem> is only allowed to2006
add new data to a data object, not to remove or replace existing data of a data object.2007

The notChangedSince XML attribute is used to handle concurrent updates. When thenotChangedSince XML2008
attribute is present, a modification is allowed to be done only if the data to be modified has not changed since the time2009
specified by the value of thenotChangedSince XML attribute.2010

The <ModifyItem> element MUST also have theitemID XML attribute, when multiple<ModifyItem> elements2011
are included in one<Modify> element and partial failure is allowed so that failed parts can be identified.2012

A <Modify> may include<ResultQuery> elements, if a WSC wants to get back data it is just modifying to, for2013
example, find out the details, was all the new data accepted, or get back possible metadata a WSP might have added2014
to the modified data.2015

<xs:attributeGroup name="ModifyItemAttributeGroup">2016
<xs:attributeGroup ref="dst:selectQualif"/>2017
<xs:attribute name="notChangedSince" use="optional" type="xs:dateTime"/>2018
<xs:attribute name="overrideAllowed" use="optional" type="xs:boolean" default="0"/>2019
<xs:attribute name="id" use="optional" type="xs:ID"/>2020
<xs:attribute ref="lu:itemID" use="optional"/>2021

</xs:attributeGroup>2022

Figure 16. XML Attributes for Modify2023

Liberty Alliance Project

49

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<xs:complexType name="ModifyType">2024
<xs:complexContent>2025

<xs:extension base="dst:RequestType">2026
<xs:sequence>2027

<xs:element ref="dstref:ModifyItem" minOccurs="1" maxOccurs="unbounded"/>2028
<xs:element ref="dstref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>2029

</xs:sequence>2030
</xs:extension>2031

</xs:complexContent>2032
</xs:complexType>2033
<xs:element name="ModifyItem" type="dstref:ModifyItemType"/>2034
<xs:complexType name="ModifyItemType">2035

<xs:sequence>2036
<xs:element ref="dstref:Select" minOccurs="0" maxOccurs="1"/>2037
<xs:element ref="dstref:NewData" minOccurs="0" maxOccurs="1"/>2038

</xs:sequence>2039
<xs:attributeGroup ref="dst:ModifyItemAttributeGroup"/>2040

</xs:complexType>2041
<xs:complexType name="ModifyResponseType">2042

<xs:complexContent>2043
<xs:extension base="dstref:DataResponseType"/>2044

</xs:complexContent>2045
</xs:complexType>2046

Figure 17. Reference Model for Modify2047

7.2. <ModifyResponse> Element2048

The <ModifyResponse>element contains the<Status> element, which describes whether or not the requested2049
modification succeeded. There is also a possible time stamp XML attribute, which provides a time value that can2050
be used later to check whether there have been any changes since this modification, and anitemIDRef XML attribute2051
to map the<ModifyResponse>elements to the<Modify> elements in the request.2052

A <ModifyResponse>may also contain<ItemData> elements which contain data requested with<ResultQuery>2053
elements. One<ItemData> element MUST NOT contain more data than requested with one<ResultQuery>element.2054
Note that a WSP MAY return data using the<ItemData> element even when a WSC did not ask for it, if a WSP thinks2055
that a WSC needs that data, e.g., to access it later on.2056

7.3. Processing Rules for Modifications2057

The common processing rules specified earlier MUST also be followed (seeSection 3).2058

7.3.1. Multiple <ModifyItem> Elements2059

1.A WSP MUST support one<ModifyItem> element inside a<Modify> and SHOULD support multiple. If the2060
<Modify> contains multiple<ModifyItem> elements and the WSP supports only one<ModifyItem> element2061
inside a<Modify> , the processing of the whole<Modify> MUST fail and a status code indicating failure2062
MUST be returned in the response. The valueNoMultipleAllowed SHOULD be used for the second level2063
status code. If a WSP supports multiple<ModifyItem> element inside a<Modify> , it MAY register the2064
urn:liberty:dst:multipleModifyItem discovery option keyword.2065

Liberty Alliance Project

50

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2. If the processing of a<ModifyItem> fails even partly due to some reason, depending on the service and/or a2066
WSP either the processing of the whole<Modify> MUST fail or a WSP MUST try to achieve partial success.2067
The top level status codeFailed or Partial MUST be used to indicate the failure (complete or partial) and a2068
more detailed second level status code SHOULD be used to indicate the reason for failing to completely process2069
the failed<Modify> element. Furthermore, theref XML attribute of the<Status>element SHOULD carry the2070
value of theitemID of the failed<ModifyItem> element and in partial success cases it MUST carry this value.2071
The modifications made based on already processed<ModifyItem> elements of the<Modify> MUST be rolled2072
back in case of a complete failure. A WSP MUST NOT support multiple<ModifyItem> elements inside one2073
<Modify> , if it cannot roll back and partial failure is not allowed.2074

3.When multiple<ModifyItem> elements inside one<Modify> element are supported and partial success is2075
allowed, a WSC MUST use theitemID XML attribute in each<ModifyItem> element so that a WSP can2076
identify the failed parts, when it is returning status information for a partial success.2077

7.3.2. What Exactly Is Modified2078

What is modified and how depends on a number of parameters including the value of the<Select>element, the content2079
of the provided<NewData>element, the value of theoverrideAllowed XML attribute, and the current content of2080
the underlying conceptual XML document.2081

1.When adding new data, the<Select>element will point in the conceptual XML document to an element which2082
does not exist yet. The new element is added as a result of processing the<ModifyItem> element. In such cases,2083
when the ancestor elements of the new element do not exist either, they MUST be added as part of processing of2084
the<ModifyItem> element so that processing could be successful.2085

2. If the <Select>points to multiple places and there is a<NewData>element with new values, the processing of the2086
<ModifyItem> MUST fail because it is not clear where to store the new data. If there is no<NewData>element2087
and theoverrideAllowed XML attribute is set toTrue , then the processing of<ModifyItem> can continue2088
normally, because it is acceptable to delete multiple data elements at once (for example, all AddressCards).2089

3.When theoverrideAllowed is set toFalse or is missing, the<NewData>element MUST be present as new2090
data should be added. If the<NewData>element is missing in this case, the processing of the<ModifyItem>2091
MUST fail and the second level status codeMissingNewDataElement SHOULD be returned in addition to top2092
level status code.2093

4.When there is the<NewData> element with new values and the<Select>points to existing information, the2094
processing of the<ModifyItem> MUST fail, if the overrideAllowed XML attribute is not set toTrue . When2095
theoverrideAllowed XML attribute does not exist or is set toFalse , the new data in the<NewData>element2096
can only be accepted in two cases: either there is no existing element to which the<Select>points, or there can be2097
multiple data elements of the same type. This means that, if the<Select>points to an existing container element,2098
which has a subelement, and only one such container element can exist, the<ModifyItem> MUST fail, even if2099
the only subelement the container element has inside the<NewData>does not yet exist in the conceptual XML2100
document. The second level status codeExistsAlready SHOULD be used to indicate in details the reason for2101
the failure in addition to the top level status code. The lack of those other sub-elements inside the<NewData>2102
means that they should be removed, which is only possible whenoverrideAllowed XML attribute equals to2103
True .2104

5.When there can be multiple elements of the same type, the addition of a new element MUST fail, if there exists2105
already an element of same type have the same value of the distinguishing part. In the case of a personal profile2106
service, adding a new<AddressCard> element MUST fail, if there already exists an<AddressCard> element2107
which has anid XML attribute of the same value as the provided new<AddressCard> element. The second2108
level status codeExistsAlready SHOULD also be used to indicate the detailed reason for failure.2109

Liberty Alliance Project

51

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

6.When all or some of the data inside the<NewData>element is not supported by the WSP, or the provided data is2110
not valid, the processing of the whole<ModifyItem> SHOULD fail and second level status codeInvalidData2111
SHOULD be returned in the response.2112

7.When the<ModifyItem> element tries to extend the service either by pointing to a new data type behind an2113
<Extension>element with the<Select>element, or having new sub-elements under an<Extension>element2114
inside the<NewData>element and the WSP does not support extension in general or for the requesting party, it2115
SHOULD be indicated in the response message with the second level status codeExtensionNotSupported .2116

8.When the WSP supports extensions, but does not accept the content of the<Select>or <NewData>, then second2117
level status codesInvalidSelect andInvalidData SHOULD be used as already described.2118

7.3.3. Handling commonAttributes and leafAttributes in Modify2119

The common XML attributes belonging to the XML attribute groupscommonAttributes andleafAttributes are2120
mainly supposed to be written by the WSP hosting the data service. There are some additional rules for handling2121
these common XML attributes in case of modifications.2122

1.When any of theACC, modifier , ACCTime or modificationTime XML attributes is used in a resource, the2123
WSP hosting the data service MUST keep their values up to date. When data is modified, themodifier MUST2124
contain the ProviderID of the modifier or have no value, and themodificationTime MUST define the time of2125
the modification or have no value. TheACCMUST define the XML attribute collection context of the current2126
value of a data element or have no value and theACCTime MUST define the time, when the current value of the2127
ACCwas defined or have no value.2128

2. If the <NewData>containsmodifier , modificationTime or ACCTimeXML attributes for any data element,2129
the WSP MUST ignore these and update the values based on other information than those XML attributes inside2130
the <NewData> provided by the WSC. If theACCXML attribute is included for any data element, the WSP2131
MAY accept it, depending on how much it trusts the requesting service provider. The WSP MAY also accept the2132
id XML attribute provided inside the<NewData>and some services MAY require that theid XML attribute2133
MUST be provided by the requesting service provider.2134

3.The id XML attribute MUST NOT be used as a global unique identifier. The value MUST be chosen so that2135
it works only as unique identifier inside the conceptual XML document, and the value of theid XML attribute2136
SHOULD be kept the same even if the element is otherwise modified. A WSP MAY not even allow changing the2137
value of theid XML attribute or any other XML attribute used to distinguish elements with the same name from2138
each other.2139

4.When data is modified based on the<Modify> request, the values of themodificationTime XML attributes2140
written by the WSP hosting the data service MAY be same for all inserted and updated elements, but there is2141
no guarantee that they will be exactly the same. When themodificationTime XML attribute is used by a2142
data service, the WSP MUST keep it up to date to indicate the time of the latest modification of an element2143
and update it, when ever a modification is done either using the<Modify> request or some other way. When2144
the modificationTime XML attribute is used in container elements, the time of a modification MUST be2145
propagated to all ancestor elements of the modified element all the way up to the root element.2146

7.3.4. Accounting for Concurrent Updates2147

Accounting for concurrent updates is handled using thenotChangedSince XML attribute inside the<ModifyItem>2148
element.2149

1.When thenotChangedSince XML attribute is present, the modifications specified by the<ModifyItem>2150
element MUST NOT be made, if any part of the data to be modified has changed since the time specified by2151
thenotChangedSince XML attribute.2152

Liberty Alliance Project

52

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2.The second level status codeModifiedSince MUST be used to indicate that the modification was not done2153
because the data has been modified since the time specified by thenotChangedSince XML attribute. If a WSP2154
does not support processing of this XML attribute properly, it MUST NOT make any changes and it MUST return2155
the second level status codeChangeHistoryNotSupported . If a WSP supports thisnotChangedSince XML2156
attribute, it MUST also support thechangedSince XML attribute of the<QueryItem> element.2157

7.3.5. WSC Might Not Be Allowed to Make Only Certain or Any Modifications2158

When a WSP processes the<ModifyItem> , it MUST check, whether the resource owner (for example, the Principal)2159
has given consent to the requestor to modify the data. To be able to check WSC-specific access rights, the WSP2160
MUST authenticate the WSC (see [LibertySecMech]). If the consent check fails for any part of the requested data,2161
the WSP MUST NOT make the modifications requested in the<ModifyItem> element, even when such consent2162
is missing only for some subelement or XML attribute. The WSP MAY try to get consent from the Principal2163
while processing the request perhaps using an interaction service (for more information see [LibertyInteract]). The2164
processing of the<ModifyItem> element MUST fail, if the modification was not allowed. The second level status2165
codeActionNotAuthorized MAY be used, if it is considered that the privacy of the owner of the resource is not2166
compromised. A WSP might check the access rights at a higher level, before getting to DST processing and MAY2167
return an ID-* Fault Message [LibertySOAPBinding] and not process the<Modify> element at all, if the requesting2168
WSC is not allowed to modify the data.</para>2169

7.3.6. WSP May Impose Some Restrictions for the Data It Is Hosting2170

1.The schemata for different data services may have some elements for which there is not an exact upper limit2171
on how many can exist. For practical reasons, implementations may set some limits. If a request tries to add2172
more elements than a WSP supports, the WSP will not accept the new element(s) and the processing of the2173
<ModifyItem> element MUST fail. The WSP should use a second level status codeNoMoreElements to2174
indicate this specific case.2175

2.The schemata for different data services may not specify the length of elements and XML attributes especially2176
in the case of strings. The WSP may also have limitations of this kind. If a request tries to add longer data2177
elements or XML attributes than a WSP supports, the WSP may not accept the data and the processing of the2178
<ModifyItem> element will fail. The WSP should use a second level status codeDataTooLong to indicate this2179
specific case.2180

7.4. Examples of Modifications2181

This example adds a home address to the personal profile of a Principal:2182

<hp:Modify xmlns:hp="urn:liberty:hp:2005-07">2183
<hp:ModifyItem>2184

<hp:Select>/hp:HP/hp:AddressCard</hp: Select>2185
<hp:NewData>2186

<hp:AddressCard id=’98123’>2187
<hp:AddressType>2188

urn:liberty:hp:addrType:home2189
</hp:AddressType>2190
<hp:Address>2191

<hp:PostalAddress>2192
c/o Carolyn Lewis$2378 Madrona Beach Way North2193

</hp:PostalAddress>2194
<hp:PostalCode>98503-2341</hp :PostalCode>2195
<hp:L>Olympia</hp:L>2196
<hp:ST>wa</hp:ST>2197
<hp:C>us</hp:C>2198

</hp:Address>2199
</hp:AddressCard>2200

</hp:NewData>2201
</hp:ModifyItem>2202

</hp:Modify>2203

Liberty Alliance Project

53

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2204
2205

The following example replaces the current home address with a new home address in the personal profile of a2206
Principal. Please note that this request will fail if there are two or more home addresses in the profile, because it2207
is not clear in this request, which of those addressed should be replaced by this address. In such a case theid XML2208
attribute should be used to explicitly point which of the addresses should be changed.2209

<hp:Modify xmlns:hp="urn:liberty:hp:2005-07">2210
<hp:ModifyItem overrideAllowed="True">2211

<hp:Select>2212
/hp:HP/hp:AddressCard2213

[hp:AddressType=’urn:liberty:id-sis-hp:add rType:home’]2214
</hp:Select>2215
<hp:NewData>2216

<hp:AddressCard id="98123">2217
<hp:AddressType>2218

urn:liberty:id-sis-hp:addrType:home2219
</hp:AddressType>2220
<hp:Address>2221

<hp:PostalAddress>2222
c/o Carolyn Lewis$2378 Madrona Beach Way2223

</hp:PostalAddress>2224
<hp:PostalCode>98503-2342</hp:PostalCode >2225
<hp:L>Olympia</hp:L>2226
<hp:ST>wa</hp:ST>2227
<hp:C>us</hp:C>2228

</hp:Address>2229
</hp:AddressCard>2230

</hp:NewData>2231
</hp:ModifyItem>2232

</hp:Modify>2233
2234
2235

This example replaces the current address identified by anid of ’98123’ with a new home address, if that address has2236
not been modified since 12:40:01 21th January 2003 UTC.2237

<hp:Modify xmlns:hp="urn:liberty:hp:2005-07">2238
<hp:ModifyItem2239

notChangedSince="2003-01-21T12:40:01Z "2240
overrideAllowed="True">2241

<hp:Select>/hp:HP/hp:AddressCard[@hp:id=’98123 ’]</hp:Select>2242
<hp:NewData>2243

<hp:AddressCard id="98123">2244
<hp:AddressType>2245

urn:liberty:id-sis-hp:addrType:ho me2246
</hp:AddressType>2247
<hp:Address>2248

<hp:PostalAddress>2249
c/o Carolyn Lewis$2378 Madrona Beach Way South2250

</hp:PostalAddress>2251
<hp:PostalCode>98503-2398</hp:PostalCode>2252
<hp:L>Olympia</hp:L>2253
<hp:ST>wa</hp:ST>2254
<hp:C>us</hp:C>2255

</hp:Address>2256
</hp:AddressCard>2257

</hp:NewData>2258
</hp:ModifyItem>2259

</hp:Modify>2260
2261
2262

Liberty Alliance Project

54

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

The following example adds another home address to the personal profile of a Principal. Anid is provided for the2263
new address.2264

<hp:Modify xmlns:hp="urn:liberty:hp:2005-07">2265
<hp:ModifyItem>2266

<hp:Select>2267
/hp:HP/hp:AddressCard2268

[hp:AddressType=’urn:liberty:id-sis-hp:ad drType:home’]2269
</hp:Select>2270
<hp:NewData>2271

<hp:AddressCard id="12398">2272
<hp:AddressType>2273

urn:liberty:id-sis-hp:addrType:home2274
</hp:AddressType>2275
<hp:Address>2276

<hp:PostalAddress>1234 Beach Way</hp:PostalAddress>2277
<hp:PostalCode>98765-1234</hp:PostalCode>2278
<hp:L>Olympia</hp:L>2279
<hp:ST>wa</hp:ST>2280
<hp:C>us</hp:C>2281

</hp:Address>2282
</hp:AddressCard>2283

</hp:NewData>2284
</hp:ModifyItem>2285

</hp:Modify>2286
2287
2288

The following example removes all current home addresses from the personal profile of a Principal:2289

<hp:Modify xmlns:hp="urn:liberty:hp:2005-07">2290
<hp:ModifyItem overrideAllowed="True">2291

<hp:Select>2292
/hp:HP/hp:AddressCard2293

[hp:AddressType=’urn:liberty:id-sis-hp:addrType: home’]2294
</hp:Select>2295

</hp:ModifyItem>2296
</hp:Modify>2297

2298
2299

The response for a valid<Modify> is as follows:2300

<hp:ModifyResponse2301
xmlns:hp="urn:liberty:hp:200 5-07"2302
timeStamp="2003-03-23T03:40:00Z">2303

<hp:Status code="OK"/>2304
</hp:ModifyResponse>2305

2306
2307

Liberty Alliance Project

55

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

8. WSF-1.1 Compatibility2308

This version (2.1) of DST was designed to work well with ID-WSF 2.0 specification family. Since it is a major version2309
upgrade, a decision was made to break the ID-WSF 1.1 compatibility, mainly by elimination of the<ResourceIDs>2310
(see alsoSection 3.6).2311

However, the two ID-WSF versions remain broadly compatible. [LibertyDisco], Section 10 "ID-WSF 1.x Resource2312
Offering conveyed in an EPR" provides a method for constructing<ResourceID>s from credentials as well as2313
making credentials and end points given knowledge of theResourceID . The frame work version header, see2314
[LibertySOAPBinding] allows simultaneous support to be implemented at run time.2315

Liberty Alliance Project

56

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

9. Actions2316

When SOAP action names are need, they SHOULD be formed by appending toservice typeone of the Request names,2317
i.e.,Create , Delete , Query , Modify , etc.2318

Example2319

urn:liberty:id-sis-dap:2005-10:dst-2.1:Query2320
2321
2322

Liberty Alliance Project

57

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

10. Checklist for Service Specifications2323

The following is a checklist of issues which should be addressed by individual service type specifications. Such2324
specifications should always state which optional features of the DST they support, in addition to defining more2325
general things such as discovery option keywords and theSelectType XML type used by the service type. A service2326
specification should complete this list with the specific values and statements required by the specification.2327

For optional features, the language specified by [RFC2119] MUST be used to define whether these features are2328
available for implementations and deployments. For example, specifying that a feature ’MAY’ be implemented by2329
a WSP means that WSPs may or may not support the feature, and that WSCs should be ready to handle both cases.2330

Default feature support policy is that all features, unless expressly waived by service specification, MUST be2331
supported, but each feature MAY be disabled administratively or by configuration in a deployment (e.g., to provide2332
read or write only service).2333

1.Specify service type. Specify namespaces for the service if different from service type.2334

2.Provide definition service schema including the methods as elements based on DST types. A service need not2335
define every possible method supported by DST and it may define additional methods supported by service2336
specific schema. The service may also rename some of the methods. If it does rename, it MUST state which DST2337
method corresponds to the renamed method. There can be several service methods that map to one DST method.2338

3.Enumerate object types2339

4.DescribeAppDataType and its contents. The description can come in form of XML schema, or the description2340
can simply describe the contents of the string that is to appear in elements derived fromAppDataType , i.e.,2341
<NewData>, <Data>, and<ItemData>. The data description may make allowance for different object types.2342

5.DescribeSelectType and how it applies to various types of objects. If selects can not be described as a string,2343
e.g., XPath can, the service may want to redefine the type using xs:redefine.2344

It is possible that different query language or dialect is applied depending on which object type is being queried.2345
If so, the service specification MUST resolve how to represent the different languages using oneSelectType2346

6.DescribeTestOpType , considering how to test all object types supported by the specification. It is possible that2347
different test language or dialect is applied depending on which object type is being tested. If so, the service2348
specification MUST resolve how to represent the different languages using oneTestOpType2349

7.DescribeSortType .2350

8.Enumerate Methods and state the required level of support. The default set of methods is<Create>, <Query>,2351
<Modify> , and<Delete>.2352

Default method support policy is as follows2353

a.All methods MUST be supported, but each method MAY be disabled administratively or by configuration2354
in a deployment (e.g. to provide read only or write only service).2355

b. If queries are disabled or access control makes it implausible that they succeed, discovery option keyword2356
urn:liberty:dst:noQuery MUST be registered.2357

c. If creates are disabled or access control makes it implausible that they succeed, discovery option keyword2358
urn:liberty:dst:noCreate MUST be registered.2359

d. If deletes are disabled or access control makes it implausible that they succeed, discovery option keyword2360
urn:liberty:dst:noDelete MUST be registered.2361

Liberty Alliance Project

58

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

e.If modifies are disabled or access control makes it implausible that they succeed, discovery option keyword2362
urn:liberty:dst:noModify MUST be registered.2363

9.The discovery option keywords (see [LibertyDisco]) can either be listed with semantics here, or via a reference to2364
the correct chapter in the specification. Please note that the DST defines the following discovery option keywords2365
and the service specification must list which of these the service may use:2366

urn:liberty:dst:allPaths2367
urn:liberty:dst:can:extend2368
urn:liberty:dst:changeHistorySupported2369
urn:liberty:dst:contingentQueryItems2370
urn:liberty:dst:extend2371
urn:liberty:dst:fullXPath2372
urn:liberty:dst:multipleCreat eItems2373
urn:liberty:dst:multipleDeleteItems2374
urn:liberty:dst:multipleModif yItem2375
urn:liberty:dst:multipleQueryItems2376
urn:liberty:dst:multipleResourc es2377
urn:liberty:dst:noQuery2378
urn:liberty:dst:noCreate2379
urn:liberty:dst:noDelete2380
urn:liberty:dst:noModify2381
urn:liberty:dst:noPagination2382
urn:liberty:dst:noSorting2383
urn:liberty:dst:noStatic2384

2385
2386

10.Element uniqueness. State here how elements with the same name are distinguished from each other. For2387
example, theid XML attribute is used for<AddressCard> and <MsgContact> elements,xml:lang and2388
script XML attributes are used for localized elements, etc. Element uniqueness MUST consider different2389
object types.2390

11.Extension support. State whether extension is supported and if so, describe this support. A reference to the2391
specification chapter defining this can be given. For example, "New elements and discovery option keywords2392
MAY be defined, see chapter Y.X for more details."2393

Extensions support should discuss both data extension and protocol extension, including<Extension>elements2394
request and response messages.2395

The default policy for protocol extension is that mutually consenting WSC and WSP MAY use extension points2396
for implementation dependent purposes. Extension points that can be thus used are2397

a.XML any extension points contained in<Extension>elements that are present in various protocol messages,2398
provided that the extension elements are namespace qualified.2399

b. If SelectType , TestOpType , or SortType is designated as unused by the service specification, then it2400
MAY be used for extension, provided that the extension data is2401

a.in URI format and use an assigned domain name as a component of the URI to ensure that extensions2402
do no collide with each other.2403

b.Namespace qualified XML document2404

12.Statement of optionality of query features (and their manifestation on discovery option keywords, see above):2405

a.Support testing2406

b.Support<ResultQuery>2407

Liberty Alliance Project

59

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

c.Support sorting2408

d.Support pagination of results2409

e.Support static sets in pagination2410

f. Support multiple<Query> elements2411

g.Support multiple<QueryItem> elements2412

h.Support multiple<TestItem> elements2413

i. SupportchangedSince (and which formats) in<ResultQuery>and<QueryItem>2414

j. SupportincludeCommonAttributes2415

13.Statement of optionality of create features (and their manifestation on discovery option keywords, see above):2416

a.Support multiple<Create>elements2417

14.Statement of optionality of delete features (and their manifestation on discovery option keywords, see above):2418

a.Support multiple<Delete>elements2419

15.Statement of optionality of modify features (and their manifestation on discovery option keywords, see above):2420

a.Support multiple<Modify> elements2421

b.Support multiple<ModifyItem> elements2422

c.Support partial success. If multiple<ModifyItem> elements are supported, is partial success supported or2423
are only atomic modifications allowed?2424

d.SupportnotChangedSince2425

Liberty Alliance Project

60

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

11. Schemata2426

11.1. DST Reference Model Schema2427

The formal schema for the reference model follows.2428

<?xml version="1.0" encoding="UTF-8"?>2429
<xs:schema2430

targetNamespace="urn:liberty:dst: 2006-08:ref"2431
xmlns:dstref="urn:liberty:dst:2006-08 :ref"2432
xmlns:dst="urn:liberty:dst:2006-08"2433
xmlns:lu="urn:liberty:util:2006 -08"2434
xmlns:xs="http://www.w3.org/2001/XMLSchema"2435
elementFormDefault="qualified"2436
attributeFormDefault="unqualified">2437

<xs:import namespace="urn:liberty:dst:2006-0 8"2438
schemaLocation="liberty-idwsf-dst-v2.1.xsd"/>2439

<xs:import namespace="urn:liberty:util:2006-08"2440
schemaLocation="liberty-idwsf-utili ty-v2.0.xsd"/>2441

<!--sec(methods)-->2442
<xs:element name="Create" type="dstref:CreateType"/>2443
<xs:element name="CreateResponse" type="dstref:CreateResponseType"/>2444
<xs:element name="Query" type="dstref:QueryType"/>2445
<xs:element name="QueryResponse" type="dstref:QueryResponseType"/>2446
<xs:element name="Modify" type="dstref:ModifyType"/>2447
<xs:element name="ModifyResponse" type="dstref:ModifyResponseType"/>2448
<xs:element name="Delete" type="dstref:DeleteType"/>2449
<xs:element name="DeleteResponse" type="dstref:DeleteResponseType"/>2450

<!--endsec(methods)-->2451
<!--sec(redefs)-->2452

<xs:complexType name="SelectType">2453
<xs:simpleContent>2454

<xs:extension base="xs:string"/>2455
</xs:simpleContent>2456

</xs:complexType>2457
<xs:complexType name="TestOpType">2458

<xs:simpleContent>2459
<xs:extension base="xs:string"/>2460

</xs:simpleContent>2461
</xs:complexType>2462
<xs:complexType name="SortType">2463

<xs:simpleContent>2464
<xs:extension base="xs:string"/>2465

</xs:simpleContent>2466
</xs:complexType>2467
<xs:complexType name="AppDataType">2468

<xs:simpleContent>2469
<xs:extension base="xs:string"/>2470

</xs:simpleContent>2471
</xs:complexType>2472

<!--endsec(redefs)-->2473
<!--sec(create)-->2474

<xs:complexType name="CreateType">2475
<xs:complexContent>2476

<xs:extension base="dst:RequestType">2477
<xs:sequence>2478

<xs:element ref="dstref:CreateItem" minOccurs="1" maxOccurs="unbounded"/>2479
<xs:element ref="dstref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>2480

</xs:sequence>2481
</xs:extension>2482

</xs:complexContent>2483
</xs:complexType>2484
<xs:element name="CreateItem" type="dstref:CreateItemType"/>2485
<xs:complexType name="CreateItemType">2486

<xs:sequence>2487
<xs:element ref="dstref:NewData" minOccurs="0" maxOccurs="1"/>2488

Liberty Alliance Project

61

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

</xs:sequence>2489
<xs:attributeGroup ref="dst:CreateItemAttributeGroup"/>2490

</xs:complexType>2491
<xs:element name="NewData" type="dstref:AppDataType"/>2492
<xs:complexType name="CreateResponseType">2493

<xs:complexContent>2494
<xs:extension base="dstref:DataResponseType"/>2495

</xs:complexContent>2496
</xs:complexType>2497
<xs:complexType name="DataResponseType">2498

<xs:complexContent>2499
<xs:extension base="dst:DataResponseBaseTyp e">2500

<xs:sequence>2501
<xs:element ref="dstref:ItemData" minOccurs="0" maxOccurs="unbounded"/>2502

</xs:sequence>2503
</xs:extension>2504

</xs:complexContent>2505
</xs:complexType>2506

<!--endsec(create)-->2507
<!--sec(query)-->2508

<xs:complexType name="QueryType">2509
<xs:complexContent>2510

<xs:extension base="dst:RequestType">2511
<xs:sequence>2512

<xs:element ref="dstref:TestItem" minOccurs="0" maxOccurs="unbounded"/>2513
<xs:element ref="dstref:QueryItem" minOccurs="0" maxOccurs="unbounded"/>2514

</xs:sequence>2515
</xs:extension>2516

</xs:complexContent>2517
</xs:complexType>2518
<xs:element name="TestItem" type="dstref:TestItemType"/>2519
<xs:complexType name="TestItemType">2520

<xs:complexContent>2521
<xs:extension base="dst:TestItemBaseType">2522

<xs:sequence>2523
<xs:element name="TestOp" minOccurs="0" maxOccurs="1" type="dstref:TestOpType"/>2524

</xs:sequence>2525
</xs:extension>2526

</xs:complexContent>2527
</xs:complexType>2528
<xs:element name="QueryItem" type="dstref:QueryItemType"/>2529
<xs:complexType name="QueryItemType">2530

<xs:complexContent>2531
<xs:extension base="dstref:ResultQueryType">2532

<xs:attributeGroup ref="dst:PaginationAttributeGroup"/>2533
</xs:extension>2534

</xs:complexContent>2535
</xs:complexType>2536

<!--endsec(query)-->2537
<!--sec(queryresp)-->2538

<xs:complexType name="QueryResponseType">2539
<xs:complexContent>2540

<xs:extension base="dst:DataResponseBaseType">2541
<xs:sequence>2542

<xs:element ref="dst:TestResult" minOccurs="0" maxOccurs="unbounded"/>2543
<xs:element ref="dstref:Data" minOccurs="0" maxOccurs="unbounded"/>2544

</xs:sequence>2545
</xs:extension>2546

</xs:complexContent>2547
</xs:complexType>2548
<xs:element name="Data" type="dstref:DataType"/>2549
<xs:complexType name="DataType">2550

<xs:complexContent>2551
<xs:extension base="dstref:ItemDataType">2552

<xs:attributeGroup ref="dst:PaginationResponseAttributeGroup"/>2553
</xs:extension>2554

</xs:complexContent>2555

Liberty Alliance Project

62

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

</xs:complexType>2556
<!--endsec(queryresp)-->2557
<!--sec(mod)-->2558

<xs:complexType name="ModifyType">2559
<xs:complexContent>2560

<xs:extension base="dst:RequestType">2561
<xs:sequence>2562

<xs:element ref="dstref:ModifyItem" minOccurs="1" maxOccurs="unbounded"/>2563
<xs:element ref="dstref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>2564

</xs:sequence>2565
</xs:extension>2566

</xs:complexContent>2567
</xs:complexType>2568
<xs:element name="ModifyItem" type="dstref:ModifyItemType"/>2569
<xs:complexType name="ModifyItemType">2570

<xs:sequence>2571
<xs:element ref="dstref:Select" minOccurs="0" maxOccurs="1"/>2572
<xs:element ref="dstref:NewData" minOccurs="0" maxOccurs="1"/>2573

</xs:sequence>2574
<xs:attributeGroup ref="dst:ModifyItemAttributeGroup"/>2575

</xs:complexType>2576
<xs:complexType name="ModifyResponseType">2577

<xs:complexContent>2578
<xs:extension base="dstref:DataResponseType"/>2579

</xs:complexContent>2580
</xs:complexType>2581

<!--endsec(mod)-->2582
<!--sec(del)-->2583

<xs:complexType name="DeleteType">2584
<xs:complexContent>2585

<xs:extension base="dst:RequestType">2586
<xs:sequence>2587

<xs:element ref="dstref:DeleteItem" minOccurs="1" maxOccurs="unbounded"/>2588
</xs:sequence>2589

</xs:extension>2590
</xs:complexContent>2591

</xs:complexType>2592
<xs:element name="DeleteItem" type="dstref:DeleteItemType"/>2593
<xs:complexType name="DeleteItemType">2594

<xs:complexContent>2595
<xs:extension base="dst:DeleteItemBaseType">2596

<xs:sequence>2597
<xs:element ref="dstref:Select" minOccurs="0" maxOccurs="1"/>2598

</xs:sequence>2599
</xs:extension>2600

</xs:complexContent>2601
</xs:complexType>2602
<xs:complexType name="DeleteResponseType">2603

<xs:complexContent>2604
<xs:extension base="lu:ResponseType"/>2605

</xs:complexContent>2606
</xs:complexType>2607

<!--endsec(del)-->2608
<!--sec(resqry)-->2609

<xs:element name="Select" type="dstref:SelectType"/>2610
<xs:element name="ResultQuery" type="dstref:ResultQueryType"/>2611
<xs:complexType name="ResultQueryType">2612

<xs:complexContent>2613
<xs:extension base="dst:ResultQueryBaseType">2614

<xs:sequence>2615
<xs:element ref="dstref:Select" minOccurs="0" maxOccurs="1"/>2616
<xs:element name="Sort" minOccurs="0" maxOccurs="1" type="dstref:SortType"/>2617

</xs:sequence>2618
</xs:extension>2619

</xs:complexContent>2620
</xs:complexType>2621
<xs:element name="ItemData" type="dstref:ItemDataType"/>2622

Liberty Alliance Project

63

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<xs:complexType name="ItemDataType">2623
<xs:complexContent>2624

<xs:extension base="dstref:AppDataType">2625
<xs:attributeGroup ref="dst:ItemDataAttributeGroup "/>2626

</xs:extension>2627
</xs:complexContent>2628

</xs:complexType>2629
<!--endsec(resqry)-->2630
</xs:schema>2631

2632
2633

11.2. DST Utility Schema2634

The formal utility schema follows.2635

<?xml version="1.0" encoding="UTF-8"?>2636
<xs:schema2637

targetNamespace="urn:liberty:dst: 2006-08"2638
xmlns:dst="urn:liberty:dst:2006-08"2639
xmlns:lu="urn:liberty:util:2 006-08"2640
xmlns:xml="http://www.w3.org/XML/1998/namespac e"2641
xmlns:xs="http://www.w3.org/2001/XMLSchema"2642
elementFormDefault="qualified"2643
attributeFormDefault="unqualified">2644

<xs:import namespace="urn:liberty:util:2006-08 "2645
schemaLocation="liberty-idwsf-utility-v2.0.xsd"/>2646

<xs:import namespace="http://www.w3.org/XML/1998/namespace "2647
schemaLocation="http://www.w3.org/2001/xml.xsd"/>2648

<!--sec(ca)-->2649
<xs:attribute name="id" type="lu:IDType"/>2650
<xs:attribute name="modificationTime" type="xs:dateTime"/>2651
<xs:attributeGroup name="commonAttributes">2652

<xs:attribute ref="dst:id" use="optional"/>2653
<xs:attribute ref="dst:modificationTime" use="optional"/>2654

</xs:attributeGroup>2655
<xs:attribute name="ACC" type="xs:anyURI"/>2656
<xs:attribute name="ACCTime" type="xs:dateTime"/>2657
<xs:attribute name="modifier" type="xs:string"/>2658
<xs:attributeGroup name="leafAttributes">2659

<xs:attributeGroup ref="dst:commonAttributes"/>2660
<xs:attribute ref="dst:ACC" use="optional"/>2661
<xs:attribute ref="dst:ACCTime" use="optional"/>2662
<xs:attribute ref="dst:modifier" use="optional"/>2663

</xs:attributeGroup>2664
<xs:attribute name="script" type="xs:anyURI"/>2665
<xs:attributeGroup name="localizedLeafAttributes">2666

<xs:attributeGroup ref="dst:leafAttributes"/>2667
<xs:attribute ref="xml:lang" use="required"/>2668
<xs:attribute ref="dst:script" use="optional"/>2669

</xs:attributeGroup>2670
<xs:attribute name="refreshOnOrAfter" type="xs:dateTime"/>2671
<xs:attribute name="destroyOnOrAfter" type="xs:dateTime"/>2672

<!--endsec(ca)-->2673
<!--sec(ct)-->2674

<xs:complexType name="DSTLocalizedString">2675
<xs:simpleContent>2676

<xs:extension base="xs:string">2677
<xs:attributeGroup ref="dst:localizedLeafAttributes"/>2678

</xs:extension>2679
</xs:simpleContent>2680

</xs:complexType>2681
<xs:complexType name="DSTString">2682

<xs:simpleContent>2683
<xs:extension base="xs:string">2684

Liberty Alliance Project

64

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<xs:attributeGroup ref="dst:leafAttributes"/>2685
</xs:extension>2686

</xs:simpleContent>2687
</xs:complexType>2688
<xs:complexType name="DSTInteger">2689

<xs:simpleContent>2690
<xs:extension base="xs:integer">2691

<xs:attributeGroup ref="dst:leafAttributes"/>2692
</xs:extension>2693

</xs:simpleContent>2694
</xs:complexType>2695
<xs:complexType name="DSTURI">2696

<xs:simpleContent>2697
<xs:extension base="xs:anyURI">2698

<xs:attributeGroup ref="dst:leafAttributes"/>2699
</xs:extension>2700

</xs:simpleContent>2701
</xs:complexType>2702
<xs:complexType name="DSTDate">2703

<xs:simpleContent>2704
<xs:extension base="xs:date">2705

<xs:attributeGroup ref="dst:leafAttributes"/>2706
</xs:extension>2707

</xs:simpleContent>2708
</xs:complexType>2709
<xs:complexType name="DSTMonthDay">2710

<xs:simpleContent>2711
<xs:extension base="xs:gMonthDay">2712

<xs:attributeGroup ref="dst:leafAttributes"/>2713
</xs:extension>2714

</xs:simpleContent>2715
</xs:complexType>2716

<!--endsec(ct)-->2717
<!--sec(msgintf)-->2718

<xs:complexType name="RequestType">2719
<xs:sequence>2720

<xs:element ref="lu:Extension" minOccurs="0" maxOccurs="unbounded"/>2721
</xs:sequence>2722
<xs:attribute ref="lu:itemID" use="optional"/>2723
<xs:anyAttribute namespace="##other" processContents="lax"/>2724

</xs:complexType>2725
<xs:complexType name="DataResponseBaseType">2726

<xs:complexContent>2727
<xs:extension base="lu:ResponseType">2728

<xs:attribute name="timeStamp" use="optional" type="xs:dateTime"/>2729
</xs:extension>2730

</xs:complexContent>2731
</xs:complexType>2732

<!--endsec(msgintf)-->2733
<!--sec(select)-->2734

<xs:element name="ChangeFormat">2735
<xs:simpleType>2736

<xs:restriction base="xs:string">2737
<xs:enumeration value="ChangedElements"/>2738
<xs:enumeration value="CurrentElements"/>2739

</xs:restriction>2740
</xs:simpleType>2741

</xs:element>2742
<xs:attribute name="changeFormat">2743

<xs:simpleType>2744
<xs:restriction base="xs:string">2745

<xs:enumeration value="ChangedElements"/>2746
<xs:enumeration value="CurrentElements"/>2747
<xs:enumeration value="All"/>2748

</xs:restriction>2749
</xs:simpleType>2750

</xs:attribute>2751

Liberty Alliance Project

65

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<xs:attribute name="objectType" type="xs:NCName"/>2752
<xs:attribute name="predefined" type="xs:string"/>2753
<xs:attributeGroup name="selectQualif">2754

<xs:attribute ref="dst:objectType" use="optional"/>2755
<xs:attribute ref="dst:predefined" use="optional"/>2756

</xs:attributeGroup>2757
<!--endsec(select)-->2758
<!--sec(resquery)-->2759

<xs:complexType name="ResultQueryBaseType">2760
<xs:sequence>2761

<xs:element ref="dst:ChangeFormat" minOccurs="0" maxOccurs="2"/>2762
</xs:sequence>2763
<xs:attributeGroup ref="dst:selectQualif"/>2764
<xs:attribute ref="lu:itemIDRef" use="optional"/>2765
<xs:attribute name="contingency" use="optional" type="xs:boolean"/>2766
<xs:attribute name="includeCommonAttributes" use="optional" type="xs:boolean" default="0"/>2767
<xs:attribute name="changedSince" use="optional" type="xs:dateTime"/>2768
<xs:attribute ref="lu:itemID" use="optional"/>2769

</xs:complexType>2770
<xs:attributeGroup name="ItemDataAttributeGroup">2771

<xs:attribute ref="lu:itemIDRef" use="optional"/>2772
<xs:attribute name="notSorted" use="optional">2773

<xs:simpleType>2774
<xs:restriction base="xs:string">2775

<xs:enumeration value="Now"/>2776
<xs:enumeration value="Never"/>2777

</xs:restriction>2778
</xs:simpleType>2779

</xs:attribute>2780
<xs:attribute ref="dst:changeFormat" use="optional"/>2781

</xs:attributeGroup>2782
<!--endsec(resquery)-->2783
<!--sec(testitem)-->2784

<xs:complexType name="TestItemBaseType">2785
<xs:attributeGroup ref="dst:selectQualif"/>2786
<xs:attribute name="id" use="optional" type="xs:ID"/>2787
<xs:attribute ref="lu:itemID" use="optional"/>2788

</xs:complexType>2789
<xs:element name="TestResult" type="dst:TestResultType"/>2790
<xs:complexType name="TestResultType">2791

<xs:simpleContent>2792
<xs:extension base="xs:boolean">2793

<xs:attribute ref="lu:itemIDRef" use="required"/>2794
</xs:extension>2795

</xs:simpleContent>2796
</xs:complexType>2797

<!--endsec(testitem)-->2798
<!--sec(pagination)-->2799

<xs:attributeGroup name="PaginationAttributeGroup">2800
<xs:attribute name="count" use="optional" type="xs:nonNegativeInteger"/>2801
<xs:attribute name="offset" use="optional" type="xs:nonNegativeInteger" default="0"/>2802
<xs:attribute name="setID" use="optional" type="lu:IDType"/>2803
<xs:attribute name="setReq" use="optional">2804

<xs:simpleType>2805
<xs:restriction base="xs:string">2806

<xs:enumeration value="Static"/>2807
<xs:enumeration value="DeleteSet"/>2808

</xs:restriction>2809
</xs:simpleType>2810

</xs:attribute>2811
</xs:attributeGroup>2812
<xs:attributeGroup name="PaginationResponseAttributeGroup">2813

<xs:attribute name="remaining" use="optional" type="xs:integer"/>2814
<xs:attribute name="nextOffset" use="optional" type="xs:nonNegativeInteger" default="0"/>2815
<xs:attribute name="setID" use="optional" type="lu:IDType"/>2816

</xs:attributeGroup>2817
<!--endsec(pagination)-->2818

Liberty Alliance Project

66

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<!--sec(create)-->2819
<xs:attributeGroup name="CreateItemAttributeGroup">2820

<xs:attribute ref="dst:objectType" use="optional"/>2821
<xs:attribute name="id" use="optional" type="xs:ID"/>2822
<xs:attribute ref="lu:itemID" use="optional"/>2823

</xs:attributeGroup>2824
<!--endsec(create)-->2825
<!--sec(mod)-->2826

<xs:attributeGroup name="ModifyItemAttributeGroup">2827
<xs:attributeGroup ref="dst:selectQualif"/>2828
<xs:attribute name="notChangedSince" use="optional" type="xs:dateTime"/>2829
<xs:attribute name="overrideAllowed" use="optional" type="xs:boolean" default="0"/>2830
<xs:attribute name="id" use="optional" type="xs:ID"/>2831
<xs:attribute ref="lu:itemID" use="optional"/>2832

</xs:attributeGroup>2833
<!--endsec(mod)-->2834
<!--sec(del)-->2835

<xs:complexType name="DeleteItemBaseType">2836
<xs:attributeGroup ref="dst:selectQualif"/>2837
<xs:attribute name="notChangedSince" use="optional" type="xs:dateTime"/>2838
<xs:attribute name="id" use="optional" type="xs:ID"/>2839
<xs:attribute ref="lu:itemID" use="optional"/>2840

</xs:complexType>2841
<xs:complexType name="DeleteResponseType">2842

<xs:complexContent>2843
<xs:extension base="lu:ResponseType"/>2844

</xs:complexContent>2845
</xs:complexType>2846

<!--endsec(del)-->2847
</xs:schema>2848

2849
2850

Liberty Alliance Project

67

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

References2851

Normative2852

[LibertyDisco] Hodges, Jeff, Cahill, Conor, eds. "Liberty ID-WSF Discovery Service Specification," Version 2.0,2853
Liberty Alliance Project (30 July, 2006).http://www.projectliberty.org/specs2854

[LibertySOAPBinding] Hodges, Jeff, Kemp, John, Aarts, Robert, Whitehead, Greg, Madsen, Paul, eds. "Lib-2855
erty ID-WSF SOAP Binding Specification," Version 2.0, Liberty Alliance Project (30 July, 2006).2856
http://www.projectliberty.org/specs2857

[LibertyPAOS] Aarts, Robert, Kemp, John, eds. "Liberty Reverse HTTP Binding for SOAP Specification," Version2858
2.0, Liberty Alliance Project (30 July, 2006).http://www.projectliberty.org/specs2859

[LibertyInteract] Aarts, Robert, Madsen, Paul, eds. "Liberty ID-WSF Interaction Service Specification," Version 2.0,2860
Liberty Alliance Project (30 July, 2006).http://www.projectliberty.org/specs2861

[LibertySecMech] Hirsch, Frederick, eds. "Liberty ID-WSF Security Mechanisms Core," Version v2.0, Liberty2862
Alliance Project (30 July, 2006).http://www.projectliberty.org/specs2863

[LibertyGlossary] Hodges, Jeff, eds. "Liberty Technical Glossary," Version v2.0, Liberty Alliance Project (30 July,2864
2006).http://www.projectliberty.org/specs2865

[LibertyReg] Kemp, John, eds. "Liberty Enumeration Registry Governance," Version 1.1, Liberty Alliance Project (142866
December, 2004).http://www.projectliberty.org/specs2867

[Schema1-2] Thompson, Henry S., Beech, David, Maloney, Murray, Mendelsohn, Noah, eds. (28 October2868
2004). "XML Schema Part 1: Structures Second Edition," Recommendation, World Wide Web Consortium2869
http://www.w3.org/TR/xmlschema-1/2870

[RFC2119] S. Bradner "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, The Internet2871
Engineering Task Force (March 1997).http://www.ietf.org/rfc/rfc2119.txt2872

[XML] Bray, Tim, Paoli, Jean, Sperberg-McQueen, C. M., Maler, Eve, Yergeau, Francois, eds. (04 February 2004).2873
"Extensible Markup Language (XML) 1.0 (Third Edition)," Recommendation, World Wide Web Consortium2874
http://www.w3.org/TR/2004/REC-xml-200402042875

Liberty Alliance Project

68

http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.w3.org/TR/xmlschema-1/
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2004/REC-xml-20040204

	Liberty ID-WSF Data Services Template
	Introduction
	Data Model
	Message Interface
	Querying Data
	Creating Data Objects
	Deleting Data Objects
	Modifying Data
	WSF-1.1 Compatibility
	Actions
	Checklist for Service Specifications
	Schemata

	References
	Normative

