Liberty Alliance Project: Version: 1.0

[]
B

PROJECT

Liberty ID-WSF Subscriptions and
Notifications

Version: 1.0

Editors:
Sampo Kelloméki, Symlabs, Inc.

Contributors:

Robert Aarts, Hewlett-Packard

Rajeev Angal, Sun Microsystems, Inc.

Conor Cahill, America Online, Inc.

Carolina Canales-Valenzuela, Ericsson

Darryl Champagne, IEEE-ISTO

Andy Feng, America Online, Inc.

Gael Gourmelen, France Télécom

Jeff Hodges, NeuStar, Inc.

Jukka Kainulainen, Nokia Corp.

Lena Kannappan, France Télécom

John Kemp, Nokia Corporation

Rob Lockhart, IEEE-ISTO

Paul Madsen, NTT

Aravindan Ranganathan, Sun Microsystems, Inc.
Matti Saarenpaa, Nokia Corporation

Jonathan Sergent, Sun Microsystems, Inc.
Lakshmanan Suryanarayanan, America Online, Inc
Greg Whitehead, Hewlett-Packard

Abstract:

This specification provides protocols for subscription and notificatiorsul#scriptionis a mechanism by which a

WSC can register to receivmtificationsfrom a WSP when some data changes or some event happens. The
subscriptions and notifications are applicable to any ID-WSF-based service, but specific guidance is provided on how
to apply them on a DST-based service.

Filename: liberty-idwsf-subs-v1.0.pdf

Liberty Alliance Project

1

a s~ wnN

© 00 N O

10

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

Notice

This document has been prepared by Sponsors of the Liberty Alliance. Permission is hereby granted to use the
document solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works
of this Specification. Entities seeking permission to reproduce portions of this document for other uses must contact
the Liberty Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this document may require licenses under third party intellectual property
rights, including without limitation, patent rights. The Sponsors of and any other contributors to the Specification are
not and shall not be held responsible in any manner for identifying or failing to identify any or all such third party
intellectual property rightsThis Specification is provided "AS IS", and no participant in the Liberty Alliance

makes any warranty of any kind, express or implied, including any implied warranties of merchantability,
non-infringement of third party intellectual property rights, and fithess for a particular purpose. Implementers

of this Specification are advised to review the Liberty Alliance Project’s weldite: (/www.projectliberty.org/for
information concerning any Necessary Claims Disclosure Notices that have been received by the Liberty Alliance
Management Board.

Copyright © 2006 Adobe Systems; America Online, Inc.; American Express Company; Amsoft Systems Pvt Ltd.;
Avatier Corporation; Axalto; Bank of America Corporation; BIPAC; BMC Software, Inc.; Computer Associates
International, Inc.; DataPower Technology, Inc.; Diversinet Corp.; Enosis Group LLC; Entrust, Inc.; Epok, Inc.;
Ericsson; Fidelity Investments; Forum Systems, Inc.; France Télécom; French Government Agence pour le
développement de I'administration électronique (ADAE); Gamefederation; Gemplus; General Motors; Giesecke &
Devrient GmbH; GSA Office of Governmentwide Policy; Hewlett-Packard Company; IBM Corporation; Intel
Corporation; Intuit Inc.; Kantega; Kayak Interactive; MasterCard International; Mobile Telephone Networks (Pty)
Ltd; NEC Corporation; Netegrity, Inc.; NeuStar, Inc.; Nippon Telegraph and Telephone Corporation; Nokia
Corporation; Novell, Inc.; NTT DoCoMo, Inc.; OpenNetwork; Oracle Corporation; Ping Identity Corporation;
Reactivity Inc.; Royal Mail Group plc; RSA Security Inc.; SAP AG; Senforce; Sharp Laboratories of America,
Sigaba; SmartTrust; Sony Corporation; Sun Microsystems, Inc.; Supremacy Financial Corporation; Symlabs, Inc.;
Telecom ltalia S.p.A.; Telefénica Mdviles, S.A.; Trusted Network Technologies; UTI; VeriSign, Inc.; Vodafone
Group Plc.; Wave Systems Corp. All rights reserved.

Liberty Alliance Project

Licensing Administrator

c/o IEEE-ISTO

445 Hoes Lane

Piscataway, NJ 08855-1331, USA
info@projectliberty.org

Liberty Alliance Project

2

http://www.projectliberty.org/

34

35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Liberty Alliance Project: Version: 1.0

Liberty ID-WSF Subscriptions and Notifications

Contents
Lo INtrOUCHION . ..o e e e 4
L0 NO RO .. e 4
1.2. Liberty CONSIAErations.o 4
1.3 NBIMESPACES. . . .o ettt e e e e e e e 4
1.4. Applying Subscriptions to DST-Based ServiCes. 4
2. General Rules Regarding Subscriptions and Notifications................. 6
2.1. Second LevetStatus>Codes for SUbSCHptions. ... 6
2.2. Discovery Option Keywords for Indicating Lack of Subscription Support................... 6
2.3. CRUD Manipulation Using Object Type "_Subscription!'., 6
2.4. No itemIDRef for Subscription-RelatedtemData> 6
3. Piggy-Backing Subscriptions to DST Operations.ttt 7
3.1.<Query> with <SUDSCHPLION> 7
3.2.<Create>with <SUDSCHIPLION> 7
3.3.<Modify> with <SUbSCHPtON> 7
A, SUDSCIIPIONS. . . .o 9
4.1. <SubsCription> @lement e 9
4.2. Selecting Data to which a Subscription Applies. ... 10
4.3. Providing Information for Sending Notifications. o i i, 10
4.4, Expiration Of SUDSCHPLION.ot e 11
4.5. Common Processing Rules for Subscriptions.o i 11
4.5.1. General Processing Rules for Subscriptions.o 11
4.5.2. Processing Rules for Data to which the Subscription Applies..................... 12
4.5.3. Processing Rules fgAggregation>and<Trigger>ccoiiiiiienniann.n.. 12
4.5.4. Processing Rules for First Notification and Expiry of Subscription. 13
4.5.5. Processing Rules When the Access and Privacy Policies Forbid Subscriptian. 13
4.6.SelectType for Subscription ObjJecCtsS. 14
4.7. Support fokSubscription> Conditioned by<Testltem> 14
5. NOUFICALIONSo 16
5.1 <NOtify> El@mMeNt ..o 16
5.2.<Notification> Elemento 16
5.3.<NotifyResponse>Element 17
5.4. Processing Rules for Notifications i 17
6. Subscription and Notification EXamples 20
6.1. Piggy-Backing a Subscription to QUETY.ottt e 20
6.2. Creating Subscription ODJECLt 20
7. Checklist for Service SPecifiCations. 22
8. SCNEMALA. . .. 24
8.1. Schema for DST Reference Model with Subscriptions and Notifications.................. 24
8.2. Subscriptions Utility SChema. o 28
RE OB CES . . .o 30

Liberty Alliance Project

3

75

76
77

78
79
80
81

82
83
84
85

86

87
88
89

90

91

92
93
94
95

96

97

98

Liberty Alliance Project: Version: 1.0

Liberty ID-WSF Subscriptions and Notifications

1. Introduction

This specification provides protocols for subscription and notification.sulscriptionis a mechanism by which a
WSC can register to receivmtificationsfrom a WSP when some data changes or some event happens.

Since there is usually data involved, it is common that data services, based on the Liberty ID-WSF Data Services
Template LibertyDST], will incorporate subscription features. A fair amount of this specification is dedicated to
these situations, including subscription as a side effect of query or create, and subscription by explicit manipulation of
subscription objects, using a DST-derived interface.

However, subscriptions can profitably be employed even outside data services and there is no need to base a service on
DST for it to use subscriptions. The Liberty ID-WSF People Service SpecificdtibarfyPeopleServiddllustrates

this approach. In such case, the service in question is responsible for providing the methods for subscription and
subscription management, while usikgubscription> element as defined in this document.

1.1. Notation

When capitalized, the key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT," "SHOULD,"
"SHOULD NOT," "RECOMMENDED," "MAY," and "OPTIONAL" in this specification are to be interpreted as
described inRFC2119. When these words are not capitalized, they are meant in their natural-language sense.

Definitions for Liberty-specific terms can be found inlertyGlossary.

1.2. Liberty Considerations
This specification contains enumerations of values that are centrally administered by the Liberty Alliance Project.
Although this document may contain an initial enumeration of approved values, implementers of the specification

MUST implement the list of values whose location is currently specifiedLiibeftyRed according to any relevant
processing rules in both this specification ahitbgrtyRed.

1.3. Namespaces

The namespaces described in Table 1 are used.

Table 1. Normatively referenced XML namespaces

Prefix URI Description

subs: urn:liberty:ssos:2006-08 Target namespace of Subscriptions and Noti-
fications schema.

subsref: |urn:liberty:ssos:2006-08:ref Target namespace of Subscriptions and Noti-
fications reference model.

dst: urn:liberty:dst:2006-08 Target namespace of DST utility schema.

dstref: |urn:liberty:dst:2006-08:ref Target namespace of DST reference model.

xml: http://www.w3.0rg/XML/1998/namespace W3C XML [XML].

XS: http://www.w3.0rg/2001/XMLSchema W3C XML Schema Definition Language
[Schemal-R

ds: urn:liberty:disco:2006-08 Liberty ID-WSF Discovery Service jberty-
Discq.

sb: urn:liberty:sbh:2006-08 Liberty ID-WSF SOAP Binding Extension
[LibertySOAPBInding.

Liberty Alliance Project

99

100
101
102

103

104
105

106

107
108
109
110

111
112
113

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

1.4. Applying Subscriptions to DST-Based Services

While Subscriptions and Notifications can be adopted by any ID-WSF-based service, if these features are to be adopted
by a DST-based service, it SHOULD be done on the basis of the extended reference model desSeioadnirB.1
i.e., this model should replace the model specified.ibgrtyDST] Section 11.1 "DST Reference Model Schema."

Specifically, the service is expected to provide definitions for

1.<Notify> and<NotifyResponse> In particular, the definition o&Notify> will depend on the data model and
schema adopted by the service.

2.<Subscription>, to incorporate the aspects of service-dependent query language.

3. An interface for manipulation of subscription objects. In the DST model, the regular "CRUD" interface is used
with the special object type " _Subscription." A service that is not otherwise DST-based may wish to support
the DST interface just for subscription object manipulation. Providing this facility is optional for a service
specification.

4. A means for establishment of subscriptions as a side effect ("piggy-backed") of other operations. Providing this
facility is optional for a service specification. An example of how this could be accomplished as a side effect of
<Create>is provided inSection 3.2

Liberty Alliance Project

5

114

115

116

117
118
119
120
121

122
123
124
125
126
127

128
129
130

131
132

133
134

135
136

137
138
139
140

141

142

143
144

145
146
147
148
149

150

151
152
153

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

2. General Rules Regarding Subscriptions and Notifications

2.1. Second Level <Status> Codes for Subscriptions

The following second level status codes are defined for subscriptions:

EmbeddedSubscriptionsNotSupported
InvalidSubscriptionID
MissingSubscriptionID

If a request or notification fails for some reason, sfe XML attribute of the<Status>element SHOULD contain the

value of theitemID XML attribute of the offending element in the request message. Subscription and notifications
messages ussibscriptionID XML attributes instead oftemID XML attributes and those should be used when
reporting failure statuses related to the sub-elements of subscription and notification messages. When the offending
element does not have titemID or subscriptionID XML attribute, the reference SHOULD be made using the

value of theid XML attribute, if that is present.

Ifitis not possible to refer to the offending element (as it hagindgtemID , orsubscriptionID XML attribute), the
reference SHOULD be made to the ancestor element having a proper identifier XML attribute closest to the offending
element.

Since bothitemID andsubscriptionID can be used to refer to a failed element, the two IDs form one hamespace.
Care should be taken to avaitl values that would create ambiguity.

2.2. Discovery Option Keywords for Indicating Lack of Subscription
Support

A WSP MAY register the following discovery option keywords to indicate that it does not support certain types of
subscription manipulations:

urn:liberty:subs:noSubscribe
urn:liberty:subs:noQuerySubscriptions

2.3. CRUD Manipulation Using Object Type "_Subscription”
Service specifications that support subscriptions musbbet type'_Subscription” to designate them.

As a service may support different types of objects SblectType MUST be defined so that it supports all different
types of objects supported by the service, including "_Subscription."

If a service supports subscriptions, thaectType MUST be specified so that it can carry strings containing XPath
expressions. If the same service type supports objects which do not use XPath but e.g., own special element structure,
theSelectType MUST still make it possible to carry just strings, this might require specifyingd="true" , but

a service type MUST NOT use real mixed type and have strings and elements at the same time, so either strings or
sub-elements are allowed, but not both at the same time.

2.4. No itemIDRef for Subscription-Related <ltemData>
The <ltemData> elements returning changed expiration times for subscriptions created based on the request mes-

sage MUST NOT contain anigemIDRef XML attribute. They containrcSubscription> elements, which carry
subscriptionID XML attributes (seesection 4.

Liberty Alliance Project

6

154

155

156

157
158
159
160
161
162

163
164
165
166

168
169

171
172
173

174

175

176
177

178
179
180
181
182
183
184
185
186
187
188

189

190
191
192
193

194

195
196
197

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

3. Piggy-Backing Subscriptions to DST Operations

N.B. Subscription texDelete>is generally not meaningful and is not discussed here.

3.1. <Query> with <Subscription>

While querying data, it is possible to simultaneously subscribe to future changes of that data by inckbulng
scription> elements inside theQuery> (seeSection 4. These<Subscription> elements MUST refer to the
<Queryltem> elements usingRefltem> elements to indicate that a WSC wants to subscribe to the same data it is
querying. The<Subscription> elements MAY also have their owrResultQuery> elements to define additional

data to which a WSC wants to subscribe. A service specification and a WSP MAY specify additional restrictions on
how subscriptions are supported inside queries, or that they are not supported at all.

<xs:complexType name="QueryType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>

<xs:element ref="subsref: Subscription" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Figure 1. Definition of Query that Supports Piggy-Backed Subscription

3.2. <Create> with <Subscription>

A <Create>element may also contain one or mer8ubscription> elements to subscribe, for example, to future
changes of the data just created (Seetion 3.

<xs:complexType name="CreateType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="subsref: Subscription" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="subsref:Createltem" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="subsref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Figure 2. Definition of Create that Supports Piggy-Backed Subscription

The<CreateResponsexlement contains, in addition to<Status>element, possibleltemData> elements, which

carry requested data related to the data just createliemData> elements may also carry information about
subscriptions, when a WSP changed or added the expiration time. For example, returned data could include a unique
ID assigned to the data object just created.

3.3. <Modify> with <Subscription>
A <Modify> may contain<Subscription> element(s) when a WSC wants to subscribe to the data it is modifying.

These<Subscription> elements MUST refer to theModifyltem> elements usingRefltem> element(s). The
<Subscription> elements MAY also have their owrResultQuery>element(s) to define additional data to which a

Liberty Alliance Project

7

198
199

200
201

202
203

205
206
207

209
210
211
212

213

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

WSC wants to subscribe. S8ection 4for more information. A service specification and a WSP MAY set additional
restrictions, i.e., how subscriptions are supported inside modification requests, if the support is allowed at alll.

A <ModifyResponse>may contairn<itemData> element(s). The elements can contain either data requested with
<ResultQuery>elements okSubscription> elements when a WSP has modified the expiration time.

<xs:complexType name="ModifyType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="subsref: Subscription" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="subsref:Modifyltem" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="subsref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Figure 3. Definition of Modify that Supports Piggy-Backed Subscription

Liberty Alliance Project

8

214

215
216
217
218
219
220

221
222

223
224
225
226
227
228
229

230
231
232

233

234

235
236

237
238
239
240
241
242
243
244

246
247
248
249
250
251

253
254
255
256
257
258

260

261
262

263

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

4. Subscriptions

The subscriptions are a mechanism through which WSCs can request notifications when a specified event happens.
The basic case is subscribing to change natifications to get updates when the data hosted by a data service related to
a Principal changes. A WSC may subscribe to change notifications even before the data exists. For example, a WSC
may want to know when a Principal adds an email address to her profile. The change of data is not the only possible
reason for a notification, there can be service-specific triggers for notifications, e.g., periodic notifications containing
current values and notifications after a Principal switches on her terminal.

As the notifications reveal not only the data they are carrying, but also that a certain thing has just happened, WSPs
must be very careful to make sure they honor the privacy of the Principals.

This document specifies ormbjectType , the " Subscription." These can be accessed and manipulated like any
other objects; they can be created, deleted, modified and queried. The difference from other object types is that
"_Subscription" objects can be created by means other than with the no@redte> A <Subscription> element

can be embedded within other request types to make it easier to subscribe to the data accessed with those requests.
For example, a WSC may subscribe to the data it just modified witMadify>. This can be done by adding a
<Subscription> element into the<Modify> request without a need to make a separ&iecate>request to create a

" Subscription" object.

When subscriptions are supported in addition to creating them, deleting subscriptionsDeiiste> MUST be
supported. Renewing subscriptions by modifying the expiration timpires XML attribute) using<Modify>
SHOULD also be supported and modifying other parameters of subscriptions MAY be supported.

Notifications are carried insideNotify> elements. The notifications are specifie®ection 5

4.1. <Subscription> element

The<Subscription>element contains all the parameters for a subscription. It defines what data a WSC wants to have,
where it should be sent, when a subscription expires, which events should trigger notifications, etc.

<xs:complexType name="SubscriptionType">
<xs:sequence>
<xs:element ref="subs:Refltem" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="lu:Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="subscriptionID" use="required" type="lu:IDType"/>
<xs:attribute name="notifyToRef" use="required" type="xs:anyURI"/>
<xs:attribute name="adminNotifyToRef" use="optional" type="xs:anyURI"/>
<xs:attribute name="starts" use="optional" type="xs:dateTime"/>
<xs:attribute name="expires" use="optional" type="xs:dateTime"/>
<xs:attribute name="id" use="optional" type="xs:|D"/>
<xs:attribute name="includeData" use="optional">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Yes"/>
<xs:enumeration value="No"/>
<xs:enumeration value="YesWithCommonAttributes"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:element name="Refltem" type="subs:RefltemType"/>
<xs:complexType name="RefltemType">
<xs:attribute name="subscriptionID" use="optional" type="lu:|IDType"/>
<xs:attribute ref="lu:itemIDRef" use="required"/>
</xs:complexType>

Figure 4. Utility Schema for Subscription

Liberty Alliance Project

9

264

266
267
268

270
271

273
274
275

276

277
278
279
280
281

282

283
284
285
286
287
288

289
290

201
292
293
294
295

296

297
298
299
300

301
302
303

304
305
306
307
308

309
310

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

<xs:element name="Subscription" type="subsref: SubscriptionType"/>
<xs:complexType name="SubscriptionType">
<xs:complexContent>
<xs:extension base="subs:SubscriptionType">
<xs:sequence>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Figure 5. Reference Model Definition of Subscription

The different subscriptions related to a same resource are distinguished from each othersbystd®tfonID

XML attribute). ThesubscriptionID XML attribute MUST be unique within all subscriptions a WSC has at a
WSP. A WSC specifies the value of tkebscriptionID XML attribute of a subscription when creating a new
subscription. After a subscription is accepted, it is referenced using this value and all notifications also carry the
subscriptionID XML attribute.

4.2. Selecting Data to which a Subscription Applies

The first parameter inside tk&ubscription>element is theResultQuery>element. This is the basic data selection
element used in multiple places. It defines what data a notification should return. The use<BethdtQuery>
element inside theSubscription> element might be a bit different than its use when querying and modifying. The
specifications for services MUST specify possible differences. Different parameters<d®éisaltQuery>element

are described together with processing ruled ibgrtyDST] Section 4 "Querying Data." There can be more than one
<ResultQuery>element inside &Subscription> element.

The<Refltem> element is used when a WSC wants to subscribe to the data it is accessing ViReqgtnestElement
Finally, a<Trigger> element can be used to specify arbitrary conditions for triggering notifications.

Normally, a notification is triggered when the data addressed byResultQuery> or <Refltem> element has
changed. There can also be other reasons that trigger notificationsTligger> element contains those triggers.
The <Trigger> element is of typeriggerType , which MUST be defined by the service's schema. The service
specification MUST define semantics and values for this parameter. Whemrigger> element is not used, a WSC
requests normal change notifications unless otherwise specified by a service specification.

4.3. Providing Information for Sending Notifications

The XML attributenotifyToRef ~ contains a reference to an endpoint object, defined in the SOAP headers of the
message, which indicates where and how (e.g., using which security mechanism and credentials or tokens) the
notification must be sent. ThetifyToRef andadminNotifyToRef design patterns and the associated end point
objects are further described ihilpertySOAPBInding.

If the adminNotifyToRef XML attribute is not specified, the subscription end notifications are sent to the end point
indicated by thenotifyToRef =~ XML attribute. The purpose of thedminNotifyToRef =~ XML attribute is to make it
possible to receive notifications in one point and manage changes to subscriptions in another point.

There can be different types of notifications. For example, a notification can be sent immediately or multiple
notifications can be sent in a bigger batch. The elemégigregation> defines what type of notifications a WSC

is requesting. The elemertAggregation> further describes, in a service-specification-dependent way, how the
notifications are to be batched. It is of typggregationType , which MUST be specified, including the detailed
semantics and allowed values, by the service specification.

Usually, a notification contains data related to a resource. Sometimes, a notification could be used to indicate that an
event related to a resource has happened, e.g., the data addressedRBsthieQuery>element has changed without

Liberty Alliance Project

10

311
312
313
314
315

316

317
318
319
320

321
322

323

324
325

326

327

328
329
330
331
332
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347

348
349
350
351
352
353
354

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

reporting the changed data. The XML attribirieludeData defines whether or not the data of the changed object
should be included in the notification messages. Possible valuéesaiglata is returnedl\o (no data is returned),
andYesWithCommonAttributes (the data is returned with the common XML attributes). A service specification
SHOULD specify a default value. It should be noted that sending just a change notification without any actual data
usually has less security and privacy issues compared to cases when the data is also included in a notification message.

4.4. Expiration of Subscription

A subscription is not valid forever. Thetarts XML attribute defines the time after which a subscription is valid
and notifications can be sent if the triggering event occurs.sfares XML attribute MUST be used only when a
subscription is not valid immediately after processing the requesteXgies XML attribute defines the time when
a subscription expires, if not renewed before that time.

If credentials needed for subscription expire earlier than a subscription, and a WSC does not provide new credentials
before they expire, the subscription MUST expire.

4.5. Common Processing Rules for Subscriptions

When subscriptions are requested by a WSC, the following processing rules MUST be obeyed. (Note: these rules are
valid regardless of the way a subscription is requested.)

A subscription is one entity which either succeeds or fails. A subscription is identified witbseriptionID

4.5.1. General Processing Rules for Subscriptions

1.1f a WSP fails to process the parameters of a subscription properly according to the specified rules, it MUST NOT
accept that subscription and SHOULD use the appropriate second level status code to indicate the reason. One
<Subscription>element in a request message may specify more than one subscriptionRaittem> elements
may have their owrsubscriptionID XML attributes. The implication of this is that oneSubscription>
element may contain subscriptions which succeed and subscriptions which fail. Failure of even one subscription
SHOULD cause an error response unless the service specification specifies rules for partial success.

2.When subscriptions are created witkiQuery> or <Modify> or within <Create>such that they are direct child
elements of the<Create> (referring to<Createltem> elements), the failure to process those subscription or
rejecting those subscriptions for other reasons (e.qg., policies) is not considered as a faik@uefy>, <Mod-
ify> or <Create>request. The normaQuery>, <Modify>, or <Create> parameters insideQueryltem>,
<Modifyltem>, or <Createltem> elements, respectively, MUST be processed normally, even if a subscription
referring to those fails, unless otherwise stated by a service specification. If a subscription is not accepted, a WSP
MUST indicate this back to a WSC. For example, if a WSP does not supBatiscription>elements embedded
as a direct child of &Query>, a<Modify>, or a<Create>element and it receives such, it MUST use the sec-
ond level status codeémbeddedSubscriptionsNotSupported to indicate this. If processing of an embedded
<Subscription> element fails, the proper second level status code MUST be returned and the&illesicrip-
tion> element MUST be referenced using thescriptionID as the value of theef XML attribute of the
<Status>element. As failing embedded subscription does not cause failure of a request message, a WSC MUST
check the returned second level status elements to find out whether those subscriptions were accepted by a WSP
or not.

3.When a new subscription is created the way data objects are normally created (i.e.,<hMéwbata> of a
<Createltem>), the normal processing rules MUST be applied with the exception that this specification gives
some object-type-specific processing rules and more detailed status codes to be used, when applicable, instead
of the generidnvalidData . When a WSP does not support subscriptions and a WSC tries to create one in
the way data objects are created, it should return the second level statusnsodportedObjectType when
subscriptions are allowed for the service type but not supported by a WSRvalidiObjectType when they
are not allowed for the service type.

Liberty Alliance Project

11

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

355 4. The values of thaubscriptionID XML attributes are WSC-specific. When a new subscription is created, it

356 MUST use asubscriptionID different from any other subscription the same WSC has at the same WSP. If a
357 WSC tries to create a new subscription which has a conflictitwgcriptionID value, a WSP MUST reject

358 that and it SHOULD use the second level status dadalidSubscriptionID

359 5.An implementation MAY decompose a composite subscription object into unit subscriptions. For example, if
360 a subscription object has multipkRefltem> elements with differensubscriptioniD XML attributes, this

361 is interpreted to create multiple logical subscriptions. An implementation may, indeed, choose to handle them
362 as separate subscriptions. While an implementation MUST support the creation of composite subscriptions, it
363 NEED NOT support composite subscriptionsd@uery>, <Modify>, and<Delete>interfaces involving objects

364 of type "_Subscription."

365 4.5.2. Processing Rules for Data to which the Subscription Applies
366 A WSC must specify in a subscription the data to which the subscription applies.

367 1.When<Subscription>elements containeResultQuery>element, a WSP MUST process its content in a similar

368 fashion as it processes the same parameters in the case of a normal query, taking into account that no data is
369 returned immediately. A WSP MUST support the requestgdctType and<Select> If a WSP does not

370 support sorting and it is requested by a WSC, a WSP SHOULD still accept the subscriptions and return data
371 unsorted in notifications. ThehangedSince XML attribute MUST be ignored, if present. When notifications

372 are expected to contain only the changed data, a WSC MA¥X@sangeFormat>to indicate formats it supports.

373 Note that with subscriptions, theChangeFormat>is used without having thehangedSince XML attribute

374 (required in regular queries). Theedefined XML attribute can be used instead of other parameters. See

375 [LibertyDST], Section 3.7 "Selection" and Section 4.4 "Processing Rules for Queries" for more details and proper
376 status codes.

377 2.When a<Refltem> element is included in a subscription, it MUST containtamIiDRef XML attribute. The

378 value of this XML attribute MUST be the same as the value ofteaniD XML attribute of a<Queryltem>,
379 a <Createltem>, or a<Modifyltem>, depending on the message. This creates a subscription to all of the data
380 manipulated in the referenced element.

381 3.If the value of theitemIDRef XML attribute does not match to any relevammID , the subscription MUST

382 NOT be accepted and the second level status todéditemIDRef SHOULD be used to indicate the reason.

383 4.1f a <Refltem> element contains aubscriptionID XML attribute and it has a different value than the

384 subscriptionID XML attribute of the<Subscription> element, the<Refltem> element defines a new sub-

385 scription which inherits other parameters, exceResultQuery>elementssubscriptionID XML attribute,

386 and possible othexRefltem> elements from th&Subscription> element in which thecRefltem> element is

387 contained. EackRefltem> that has a&ubscriptionID XML attribute creates a new independent subscription.

388 If multiple <Refltem> elements have the same value of #uescriptionID , they all form one subscription

389 together and that subscription has multiple sets of selection parameters. If data selected by any of the sets is
390 changed, a notification is sent.

391 5. A <Subscription> element may contain any number<dResultQuery>, <Refltem>, and<Trigger> elements.

392 If none of the elementsResultQuery>, <Refltem> or <Trigger> are present, the processing of #®ubscrip-

393 tion> element MUST fail unless the service specification has defined, what this kind of a case means, e.g., some
394 default values are defined for parameters and those are used or a WSC subscribes to the whole resource. When
395 the processing of aSubscription> element fails due to not havingResultQuery>, <Refltem> or <Triggers>

396 present, the second level status cttissingSelect ~ SHOULD be used to indicate this.

397 4.5.3. Processing Rules for <Aggregation> and <Trigger>

Liberty Alliance Project

12

398
399
400
401
402

403
404
405
406
407
408

409

410

411
412
413
414

415
416
417
418

419
420
421
422
423
424
425
426
427
428
429
430
431

432
433
434

435
436
437
438

439
440

441
442

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

1.A WSP MUST follow the processing rules defined in the service specification for the elexfaygsegation>
and <Trigger>. If the use of these elements is not specified for the service or specified, but not supported
by a WSP, and either of both of them are included irSubscription> element in a<Subscribe>request,
the processing of the&Subscription> MUST fail and a second level status code SHOULD be used, either
AggregationNotSupported or TriggerNotSupported , to indicate this.

2.1f a WSP does support aggregation, but not the typeAfgregation>a WSC requests, the processing of
the <Subscription> MUST fail and the second level status coHequestedAggregationNotSupported
SHOULD be used, in addition to the top level status code, to indicate this. Similarly, if a WSP does support
triggers, but not the type of<€lrigger> a WSC requests, the processing of #8ubscription>MUST fail and
the second level status coBequestedTriggerNotSupported SHOULD be used, in addition to the top level
status code, to indicate this.

4.5.4. Processing Rules for First Notification and Expiry of Subscription
A WSC may request when the first notification may be sent and when a subscription should expire.

1.1f a <Subscription> element contains starts XML attribute, subscription MUST be validnly after the time
defined. If thestarts XML attribute is omitted, the subscription MUST be valid immediately after processing
the request. Also, if the time specified by titarts XML attribute is in the past, then that subscription, if
accepted by a WSP, MUST be valid immediately after processing the request.

2. The time specified by thexpires XML attribute MUST be the same time or a later time than the time specified
by thestarts XML attribute in the same&Subscription>element. It also MUST be later than the current time.
If either of the checks is not passed, then the processing af$hibscription> MUST fail and the second level
status codénvalidExpires SHOULD be used, in addition to the top level status code, to indicate this.

3.A WSP MAY change the time when a subscription expires from the expiration time requested by a WSC with
theexpires XML attribute. A WSP MAY shorten the expiration time, but it MUST NOT make the expiration
time longer. If noexpires XML attribute is included in acSubscription> element in a request from a WSC, a
WSP MUST decide the expiration time for the subscription, if expiration times are required either by the service
specification or the WSP. A WSP MUST return the expiration time in the response message if it is changed
compared to what a WSC requested. This information is returned by returriSglascription> element with
XML attributessubscriptionID andexpires inside a<Data> element in the case of e€QueryResponse>
and inside a<ltemData> in the case of aCreateResponse>and <ModifyResponse> That <Data> or
<ltemData> element MUST NOT contain any other data th&Bubscription> elements created based on one
<Subscription>element or, when a normal data object creation method has beerxGsduscription>elements
created with one<Createltem> element. The<Data> or <ltemData> element SHOULD NOT contain any
itemIDRef XML attributes. The matching is done based on #abscriptionID XML attributes carried
inside<Subscription> elements.

4.1f a WSC wants to renew an existing subscription before it has ended, it MUST modify that subscription and give
a new value for thexpires XML attribute of that subscription. A WSP MAY modify the new value in the
same way as it MAY modify the proposed value for a new subscription.

5. There is one special case when using subscriptions expirations. Whetarthe andexpires XML attributes
have exactly the same value, the meaning is that a notification MUST be sent exactly at that time whether some
event (e.g., data change) has happened or not. A WSC wants to get current values of the data (e.g., location)
exactly at that time, even if the values have stayed the same for a long time (e.g., a Principal has not moved).

4.5.5. Processing Rules When the Access and Privacy Policies Forbid
Subscription

The access and privacy policies specified by the resource owner may not allow a WSC to subscribe to the data of a
resource or to some events related to a resource.

Liberty Alliance Project

13

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

443 1.When a WSP processes&ubscription> element, it MUST check whether the resource owner (the Principal,

444 for example) has given consent to return the requested data and the fact that an event or data change has happened
445 in notification messages. To be able to check WSC-specific access rights, the WSP MUST authenticate the
446 WSC (see l[ibertySecMecl). The WSP MUST also check that any usage directive given in the request is

447 acceptable based on the usage directives defined by the resource ownkib@egdOAPBInding). If either

448 check fails, the WSP MUST NOT accept the subscription and the processing &fShbscription> MUST

449 fail. The WSP MAY try to get consent from the Principal while processing the request, perhaps by using an
450 interaction service (se&ipertyinterac]). A WSP might check the access rights and policies in usage directives

451 at a higher level, before getting to DST processing and MAY, in this case, just return an ID-* Fault Message
452 (see LibertySOAPBInding) without processing th&equestElememtiement at all if the requesting WSC is not

453 allowed to access the data in question.

454 2. Note that there can be consent for subscribing to some data element but not its XML attributes. A Principal might

455 not want to release theodifier =~ XML attribute if she does not want to reveal information about which services

456 she uses. If a WSC is not allowed to get all the data, but some of the data it wants, a WSP SHOULD accept the
457 subscription, but it MAY also reject it. If a subscription is accepted, the data for which there is no consent from
458 the Principal MUST be handled as if there were no data. Also that data, or the fact that the data has changed,
459 MUST NOT be included in the notification messages sent later on.

460 3.I1f a WSC has made a subscription and included the usage directive it has promised to obey, then later wants to
461 change the usage directive, it MUST cancel the subscription and make a new subscription with the new value for
462 the usage directive.

463 4.6. SelectType for Subscription Objects

464 N.B. This subsection is about selecting the wanted subscription objects when deleting and modifying
465 them, not about a subscription selecting the right data for notifications. When a WSC wants to access
466 existing subscription objects after they have been created, it must be able to select the right ones.
467 XPath is used to select the subscription objects.

468 The minimum a WSP MUST support iss: Subscription[@ns:subscriptionID="xx"] so that a WSC can

469 delete an existing subscription usir@elete> Of course, theobjectType XML attribute must have the value
470 "_Subscription." Just by setting tbbjectType XML attribute to *_Subscription," a WSC can delete all subscriptions
471 it has related to a resource.

472 A WSP SHOULD also supporhs:Subscription[@ns:subscriptionID="xx"]/@ns:expires to make it
473 possible to renew a subscription before it expires by usigdify>.

474 A WSP MAY also support:

475 /ns: Subscription[@ns:subscriptionID="xx"]/ns:notifyToRe f

476 /ns: Subscription[@ns: subscriptionID="xx"]/ns:adminNot ifyToRef
477
478

479 to make it possible to change endpoints and related information.
480 A WSP MUST support abbreviated XPath, as describedXPATH] Section 2.5.
481 A WSP MAY also support full XPath to make it possible to modify all the parameters of a subscription without

482 the need to rewrite those parameters which do not change, but a subscription can be updated by selecting it using
483 /ns:Subscription[@ns:subscriptionID] and rewriting the whole subscription.

484 4.7. Support for <Subscription> Conditioned by <Testltem>

Liberty Alliance Project

14

485
486

487
488

489
490

491
492
493

494
495

496
497

498
499

500
501
502
503

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

A WSC can subscribe to be notified if the results of a test change. For example, if the original result of a test was true,
the WSC can ask to be notified when the result becomes false and vice versa.

The WSC indicates that it is subscribing to the test results by speciigimgDRef XML attribute that references
the appropriateTestitem> element. The result is reported widestResult>in the <Notification>.

1. A service specification MAY restrict, or forbid, use ©Testltem> in conjunction with<Subscription>. If use
of <Testltem> is fully supported, the WSP MAY register the discovery option keyword

urn:liberty: subs:contingentSubscription

2. A <Subscription>that referencesTestltem>MUST NOT have<Trigger>. The only valid triggering condition
is "on change,"” which is implied, thus rdrigger> element is necessary.

3.If theitemIDRef attribute does not match<@estltem>, then the WSP MUST stop processing ttfgubscrip-
tion> and return a second level status co@sSuchTest .

4.1f <Subscription>has antemIDRef XML attribute, the WSP MUST detect changes to the result of evaluation
of the<Testltem> referenced by th#zemIDRef and send notifications when such changes occur.

5.The scope of thééemIDRef is one<Query>, <Create>, or <Modify>. itemIDRef MUST NOT refer to an
itemID in another top level element. TliemID XML attributes of<Testltem> elements MUST be unique
within one<Query>, <Create>, or <Modify> element in the request. Thdestltem>, <ResultQuery>, and
<Queryltem> share sami&emID space.

Liberty Alliance Project

15

504

505
506
507

508

509
510

511
512
513
514
515
516
517
518

520
521
522
523
524
525

527

528

529
530
531

533
534
535

537
538

540
541
542

544
545
546
547
548
549

551
552
553

554

555

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

5. Notifications

When a WSC has subscribed to some data or event, a WSP will send notifications when the subscribed data changes
or the event happens. A notification can also be sent when a subscription expires or is changed by a WSP (e.g., it
shortens the expiration time).

5.1. <Notify> Element

Notifications are carried byNotify> elements. One&Notify> element may carry one or mordNotification>
elements. Otherwise, theNotify> element just has the normal andtimestamp XML attributes.

<xs:attributeGroup name="NotifyAttributeGroup">
<xs:attribute name="timeStamp" use="optional" type="xs:dateTime"/>
</xs:attributeGroup>
<xs:complexType name="NotificationType">
<xs:sequence>
<xs:element ref="lu:TestResult" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" use="optional" type="xs:|D"/>
<xs:attribute name="subscriptionID" use="required" type="|u:IDType"/>
<xs:attribute name="expires" use="optional" type="xs:dateTime"/>
<xs:attribute nhame="endReason" use="optional" type="xs:anyURI"/>
</xs:complexType>
<xs:complexType name="NotifyResponseType">
<xs:complexContent>
<xs:extension base="lu:ResponseType"/>
</xs:complexContent>
</xs:complexType>

Figure 6. Utility Schema for Notify

<xs:complexType name="NotifyType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="subsref:Notification" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attributeGroup ref="subs:NotifyAttributeGroup"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Notification" type="subsref:NotificationType"/>
<xs:complexType name="NotificationType">
<xs:complexContent>
<xs:extension base="subs:NotificationType">
<xs:sequence>
<xs:element ref="subsref:ltemData" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
<Ixs:complexType>
<xs:complexType name="NotifyResponseType">
<xs:complexContent>
<xs:extension base="subs:NotifyResponseType"/>
</xs:complexContent>
</xs:complexType>

Figure 7. Reference Model Definition of Notify

5.2. <Notification> Element

Liberty Alliance Project

16

556
557
558

559
560
561
562

563
564
565
566

567
568

569
570
571
572
573
574

575

576
577

578

579
580

581
582
583
584

585
586

587

588
589
590

591

592

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

The main content of theNotification> element is thecltemData> element, which contains the data the notification
carries (e.g., current location, changed home address). In the case of a change natification, the same formats as in
responses to queries for changed data are used.

The <ltemData> element may also contain some other type of data indicating what kind of an event has happened.
The whole<ltemData> element might not be used at all as it is possible to subscribe to notifications to indicate that an
event has happened (e.g., data has changed without having the data in a notification messagkcrigtienID

indicates what data has changed. For privacy reasons, this is the recommended alternative in many cases.

In addition to the<ltemData> element(s), the<Notification> element has a number of XML attributes. The
subscriptionID XML attributes identifies the subscription based on which a notification is sent. SeNoike-
fication> element carries information only related to or@ubscription>. A <Notify> element may carry multiple
<Notification> elements.

One<ltemData> element MUST NOT contain more data that address by<d®esultQuery> or <Refltem> of the
subscription.

Theexpires XML attribute is used to indicate in a notification message the time when the subscription will expire.

In an administrative notification, thendReason XML attribute can be used to indicate the reason for the end of the
subscription. This might give some indication to a WSC that a WSP is having some problems or whether it makes
sense or not for a WSC to try to make the subscription again.ehiReason XML attribute is not used in normal
notifications, only when administrative notifications are used to notify that a subscription has ended. Possible values
for theendReason XML attribute include:

urn:liberty:subs:endreason: unspecifietihe real reason is unspecified.

urn:liberty:subs:endreason:wscnotacknowledgidgWSP cancels the subscription as it has not received acknowl-
edgments from a WSC to the notification messages.

urn:liberty:subs:endreason:resourcedelet@&tie resource has been deleted so there is no data available anymore.

urn:liberty:subs:endreason:expired he subscription has expired. Either a WSC did not renew it in time or a WSP
changed the expiration time.

urn:liberty:subs:endreason:credentialsexpirddhe credentials given for sending natifications have expired, thus a
WSP is not capable of sending any more notifications. This notification might have to be sent
just before the credentials are about to expire. Otherwise, even this naotification can not be
sent.

A WSP must be careful not to compromise the privacy of a Principal when sending the reason codes for ending a
subscription.

5.3. <NotifyResponse> Element

Notifications are acknowledged using thdlotifyResponse>element. It contains only theStatus> element.
A service specification MUST specify whether notifications acknowledgments are used or not or whether it is an
implementation- or deployment-specific decision.

5.4. Processing Rules for Notifications

The common processing rules specifiedlitbprtyDST], Section 3 "Message Interface,” also MUST be followed.

Liberty Alliance Project

17

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

593 1.A WSP MUST send a notification message to a WSC which has made a subscription when an event defined

594 by the parameters of that subscription happens. When sending these normal notification message to a WSC, a
595 WSP MUST use the information provided in the XML attribukgtifyToRef ~ element (i.e., endpoint, security
596 mechanism, and credentials or tokens).

597 2.When a subscription becomes invalid or has been changed by a WSP somehow, a WSP MUST send a notification

598 to indicate this if administrative notifications about subscriptions are used. When a WSP is sending a notification
599 about expiration or change of a subscription, it MUST use the information provided in the XML attribute
600 adminNotifyToRef (i.e., endpoint, security mechanism, and credentials or tokens). dfithiaNotifyToRef

601 XML attribute is not specified, theotifyToRef ~ element is used instead.

602 3.If the receiving WSC can not successfully process one of<tNetification> elements inside oneNotify>

603 element, it SHOULD process, normally, the rest of #Notification> elements and try to achieve a partial
604 success. A WSC MUST support multipt&otification> elements inside oneNotify> element.

605 4.A <Notification> element inside a notification message MUST havaulascriptionIlD XML attribute to

606 identify the subscription based on which the notification message is sent. HubiseriptionID XML

607 attribute is missing, the processing of tkdotification> element MUST fail and the second level status code
608 MissingSubscriptionID SHOULD be used, in addition to a top level status code, to indicate this. If a
609 WSC does not recognize the value ofubscriptionID XML attribute, the processing of thalNotification>

610 element MUST fail and the second level status ciogelidSubscriptionlD SHOULD be used, in addition
611 to a top level status code, to indicate this.

612 5. A <Notification> element inside a notification message MUST haveeffpes XML attribute, if subscription

613 expiration is used. When a WSC receiving a notification knows thagxthiees XML attribute should have
614 been used, but it is not, it SHOULD use the second level status Mad@gExpiration . lrrespective of
615 reporting the missingxpires , the WSC MAY decide whether it considers this a failure or not.

616 6. One<Notification> element MUST NOT contain both the data subscribed and information about the change of a
617 subscription. The only exception is the expiration time. If a WSP changes the expiration time, an administrative
618 notification is sent, if used, but the new expiration time is also included in the normal notifications.

619 7.1f a <Naotification> element is supposed to contain data about a resource (i.énclimeData XML attribute

620 of a subscription has either the vaes or YeswithCommonAttributes), the<ltemData> element MUST be

621 used in a<Notification> element. The content of afitemData> element MUST be according to the parameters

622 of the related subscription, especiafiResultQuery>or <Refltem>, and the related event which has caused this

623 <Notification> element to be sent inside a notification message. In the case of a change notification, the same
624 formatting rules for the content, as in the case of a query for changes, MUST be followed.itsxeyDST],

625 Section 4 "Querying Data"). A WSP MUST NOT include any data which the WSC is not allowed to get based
626 on access rights and privacy policies defined by the resource ownekItfeanData> element should have been

627 included in a<Notification> element, but it is missing, the processing of #idotification> element MUST falil

628 and the second level status cadisingDataElement ~ SHOULD be used, in addition to the top level status

629 code, to indicate this.

630 8.For change notification,@hangeFormat XML attribute MUST be added for anltemData> element to indicate
631 the format used to show the changes if a service specification has not mandated only one specific format to be
632 used for this.

633 9.If the data inside arltemData> element is invalid, the processing of thiotification> element MUST fail and

634 the second level status coblwalidData ~ SHOULD be used, in addition to the top level status code, to indicate
635 this. A WSC MUST accept all the data which can be considered as possible normal extension if extensions are
636 allowed for a service based on the service specification.

Liberty Alliance Project

18

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

637 10.If a <Notification> element has thendReason XML attribute, the notification is expected to indicate the end

638 of the subscription and all other content of thNotification> element. The exception to this is that the
639 subscriptionID XML attribute MUST be ignored unless some service-specific extensions needed in these
640 kinds of cases have been specified. &h¢Reason XML attribute MUST have a value specified in this document
641 or valid service or implementation-specific value. A WSP MUST be careful not to use any value which might
642 compromise the privacy of a Principal.

643 11.A WSP SHOULD resend a notification for which it does not get an acknowledgment in reasonable time if
644 acknowledgments are used. If a WSP does not get acknowledgments at all within its time and other limits, it
645 MAY cancel the related subscription.

Liberty Alliance Project

19

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

646 6. Subscription and Notification Examples

6a7 6.1. Piggy-Backing a Subscription to Query

648 Consider a subscription to data that is queried.

649 <Query>

650 <Queryltem itemID="djkfgjkdf">
651 <Select>/hp:HP/hp:AddressCard</Select >
652 </Queryltem>

653 <Subscription

654 includeData="Yes"

655 subscription|D="tr578k-kydg4b"
656 notifyToRef="#123">

657 <Refltem itemIDRef="djkfgjkdf"/>
658 </Subscription>

659 </Query>

660

661

662 Here we sedtemIDRef referencing the<Queryltem> to define the data to be subscribed. The subscriber also
663 allocates aubscriptionID and provides the end point to contact by way of ithéfyToRef XML attribute that
664 references an endpoint in the SOAP headers (not shown).

665 This subscription could later generate following notification.

666 <Notify>

667 <Notification subscriptionID="tr578k-kydg4b">
668 <ItemData>

669 <hp:AddressCard id="9812">

670 <hp:AddressType>urn:liberty:id-sis-hp:addrType:home </hp: AddressType>
671 <hp:Address>

672 <hp:C>us</hp:C>

673 </hp:Address>

674 </hp:AddressCard>

675 </ItemData>

676 </Notification>

677 </Notify>

678

679

680 The salient point to notice is that thé@otification> correlates to the subscription using thscriptionID XML
681 attribute.

682 6.2. Creating Subscription Object

683 Consider:

684 <Create>

685 <Createltem objectType="_Subscription" itemID="1">
686 <NewData>

687 <Subscription

688 subscriptionlD="subs123"

689 notifyToRef="#1"

690 includeData="1">

691 <ResultQuery objectType="entry">
692 <Select attributes="HELLO"/>
693 </ResultQuery>

694 <Refltem itemIDRef="1"/>

695 </Subscription>

696 </NewData>

697 </Createltem>

698 </Create>

Liberty Alliance Project

20

699
700

701

702

703

704

705

Liberty Alliance Project:
Liberty ID-WSF Subscriptions and Notifications

The above example illustrates:
a.Creating a subscription by explicit creation of an object of type "_Subscription,"
b. Defining notification data usingResultQuery>,
c.Creating a subscription to the data<€reateltem> by referencing it usingcRefltem>, and

d. Subscribing to the changes to the subscription itself.

Liberty Alliance Project

21

Version: 1.0

706

707
708

709
710
711

712
713
714

715

716
717
718

719

720

721

722
723

724
725

726

727

728

729

730

731

732

733

734

735
736
737

738
739
740
741

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

7. Checklist for Service Specifications

1. Provide schema forNotify>, <NotifyResponse>and<Subscription>elements. If these are named differently,
indicate the correspondence to the standard naming.

2.1f the service supports subscriptions, it will need to handle the object type "_Subscription. AgbataType
is defined using XML schema, this schema needs to make allowance (e.g., by usixg:itteice>construct)
for <Subscription> elements by referencing the DST schema.

If the service adopts the default definitionApDataType , which uses thenixedcontent model, then the default
is that all string data belongs to the service-specified object types whilguyscription> containers belong
to object type "_Subscription.” Further, an element of tppDataType may only contain objects of one type.

3.Describe howselectType applies to subscriptions.

In particular, if the service supports subscriptions, it MUST provide a way to specify XPath expressions for

qguerying them. The XPath expressions MAY be restricted to the subset descriBedtion 4.6 This MAY be
specified by stating that "default restriction on XPaths for subscriptions applies."

4.Describe thdriggerType or state that is not used.
5. Describe theAggregationType or state that is not used.
6. Extension support.

a.lf TriggerType or AggregationType is designated as unused by the service specification, then it MAY
be used for extension, provided that the extension data is

a.In URI format and use an assigned domain name as a component of the URI to ensure that extensions

do no collide with each other.
b. A namespace-qualified XML document.
7. Statement of how subscriptions can be established and manipulated.
a.Support CRUD manipulation of subscriptionscdectType " Subscription."”
b. Support subscribing irQuery>.
c. Support multiple<Subscription> elements irkQuery>.
d. Support subscribing irCreate>.
e.Support multiple<Subscription> elements inrkCreate>.
f. Support subscribing irModify>.

g. Support multiple<Subscription> elements irkModify>.

8. Start of a subscription. Usually, a subscription is valid after it has been created, but, if supported, a WSC

may request that a subscription is valid only after a specific time usingtdhte XML attribute. It MUST be
specified here whether tlsearts XML attribute is supported or not.

9. Subscription expiration. Usually, subscriptions expire after a certain time, but a service specification may also
specify, for example, that subscription expiration is not used and WSCs must cancel subscriptions after they are
not needed. It MUST be specified here whether subscriptions expire or not (e.g., Subscription expiration MUST

be used).

Liberty Alliance Project

22

742
743
744

745
746

747
748

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

10.Supportexpires==starts . Is specifying the same time for both thearts andexpires XML attributes to
request one notification message at a specified time (e.g., same value MAY be used bothtéoistheand the
expires XML attribute) allowed?

11.Support querying existing subscriptions. Some services or implementations may or may not support querying
existing subscriptions. This should be stated here (e.g., MUST NOT be supported).

12.Support acknoledging notifications. Some services or implementations may or may not support acknowledging
notifications using<NotifyResponse> This should be stated here (e.g., Notifications MUST BE acknowledged).

Liberty Alliance Project

23

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

749 8. Schemata

750 8.1. Schema for DST Reference Model with Subscriptions and
751 Notifications
752 The formal schema for the reference model follows.

753 <?xml version="1.0" encoding="UTF-8"?>
754 <xs:schema

755 targetNamespace="urn:liberty:ssos :2006-08:ref"
756 xmins:subsref="urn:liberty:ssos: 2006 -08:ref"
757 xmins:dst="urn:liberty:dst:2006-08"

758 xmins:subs="urn:liberty:ssos: 2006-08"

759 xmins:lu="urn:liberty:util: 2006-08"

760 xmins:xs="http://iwww.w3.0rg/20 01/XMLSchema"
761 elementFormDefault="qualified"

762 attributeFormDefault="unqualified">

763 <xs:import namespace="urn:liberty:dst:2006-08"
764 schemalocation="liberty-idwsf-ds t-v2.1.xsd"/>
765 <xs:import nhamespace="urn:liberty:ssos:2 006-08"
766 schemal.ocation="liberty-idwsf-subs-v1.0.xsd"/>
767 <xs:import namespace="urn:liberty:util:2006-08"
768 schemalocation="liberty-idwsf-utility-v2.0.xsd"/>

769 <!--sec(methods)-->

770 <xs:element name="Create" type="subsref:CreateType"/>

771 <xs:element name="CreateResponse" type="subsref:CreateResponseType"/>
772 <xs:element name="Query" type="subsref:QueryType"/>

773 <xs:element name="QueryResponse" type="subsref:QueryResponseType"/>
774 <xs:element name="Modify" type="subsref:ModifyType"/>

775 <xs:element name="ModifyResponse" type="subsref:ModifyResponseType"/>
776 <xs:element name="Delete" type="subsref:DeleteType"/>

77 <xs:element name="DeleteResponse" type="subsref:DeleteResponseType"/>
778 <!--endsec(methods)-->

779 <!--sec(notifymethods)-->

780 <xs:element name="Notify" type="subsref:NotifyType"/>

781 <xs:element name="NotifyResponse" type="subsref:NotifyResponseType"/>
782 <!--endsec(notifymethods)-->

783 <!--sec(redefs)-->

784 <xs:complexType name="SelectType">

785 <xs:simpleContent>
786 <xs:extension base="xs:string"/>
787 </xs:simpleContent>

788 </xs:complexType>
789 <xs:complexType name="TestOpType">

790 <xs:simpleContent>
791 <xs:extension base="xs:string"/>
792 </xs:simpleContent>

793 </xs:complexType>
794 <xs:complexType name="SortType">

795 <xs:simpleContent>
796 <xs:extension base="xs:string"/>
797 </xs:simpleContent>

798 </xs:complexType>
799 <xs:complexType name="TriggerType">

800 <xs:simpleContent>
801 <xs:extension base="xs:string"/>
802 </xs:simpleContent>

803 </xs:complexType>
804 <xs:complexType name="AggregationType">

805 <xs:simpleContent>
806 <xs:extension base="xs:string"/>
807 </xs:simpleContent>

808 </xs:complexType>
809 <xs:complexType mixed="1" name="AppDataType">
810 <xs:sequence>

Liberty Alliance Project

24

811

813
814
815
816
817
818

820
821
822

824
825

827
828
829

831
832

834
835
836

838
839

841
842
843
844
845
846

848
849
850

852
853

855
856
857

859
860

862
863
864

866
867

869
870
871

873
874
875
876
877

Liberty Alliance Project: Version:

Liberty ID-WSF Subscriptions and Notifications

<xs:element ref="subsref: Subscription" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<l--endsec(redefs)-->
<l--sec(create)-->
<xs:complexType name="CreateType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="subsref: Subscription" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="subsref:Createltem" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="subsref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(create)-->
<l--sec(createaux)-->
<xs:element name="Createltem" type="subsref: CreateltemType"/>
<xs:complexType name="CreateltemType">
<xs:sequence>
<xs:element ref="subsref:NewData" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attributeGroup ref="dst: CreateltemAttributeGroup"/>
</xs:complexType>
<xs:element name="NewData" type="subsref:AppDataType"/>
<xs:complexType name="CreateResponseType">
<xs:complexContent>
<xs:extension base="subsref:DataResponseType"/>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="DataResponseType">
<xs:complexContent>
<xs:extension base="dst:DataResponseBaseType" >
<xs:sequence>
<xs:element ref="subsref:ltemData" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(createaux)-->
<l--sec(query)-->
<xs:complexType name="QueryType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="subsref:Queryltem" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="subsref: Subscription" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(query)-->
<l--sec(queryaux)-->
<xs:element name="Testltem" type="subsref: TestltemType"/>
<xs:complexType name="TestltemType">
<xs:complexContent>
<xs:extension base="dst:TestltemBaseType">
<xs:sequence>
<xs:element name="TestOp" minOccurs="0" maxOccurs="1" type="subsref: TestOpType"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Queryltem" type="subsref:QueryltemType"/>
<xs:complexType name="QueryltemType">

Liberty Alliance Project

25

1.0

878

880
881
882

884
885

887
888
889

891
892

894
895
896

898
899

901
902
903

905
906

908
909
910

912
913

915
916
917

919
920

922
923
924

926
927
928
929
930
931

933
934

936
937
938

940
941
942
943
944

Liberty Alliance Project:
Liberty ID-WSF Subscriptions and Notifications

<xs:complexContent>
<xs:extension base="subsref:ResultQueryType">
<xs:attributeGroup ref="dst: PaginationAttributeGroup" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(queryaux)-->
<l--sec(queryresp)-->
<xs:complexType name="QueryResponseType">
<xs:complexContent>
<xs:extension base="dst:DataResponseBaseType">
<xs:sequence>

<xs:element ref="subsref:Data" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Data" type="subsref:DataType"/>
<xs:complexType name="DataType">
<xs:complexContent>
<xs:extension base="subsref:ltemDataType">

<xs:attributeGroup ref="dst: PaginationResponseAttr ibuteGroup"/>

</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(queryresp)-->
<l--sec(mod)-->
<xs:complexType name="ModifyType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>

<xs:element ref="subsref: Subscription" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="subsref:Modifyltem" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="subsref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(mod)-->
<l--sec(modaux)-->
<xs:element name="Modifyltem" type="subsref:ModifyltemType"/>
<xs:complexType name="ModifyltemType">
<xs:sequence>

<xs:element ref="subsref:Select” minOccurs="0" maxOccurs="1"/>

</xs:sequence>
<xs:attributeGroup ref="dst: ModifyltemAttributeGroup"/>
</xs:complexType>
<xs:complexType name="ModifyResponseType">
<xs:complexContent>
<xs:extension base="subsref:DataResponseType"/>
</xs:complexContent>
<Ixs:complexType>
<l--endsec(modaux)-->
<l--sec(del)-->
<xs:complexType name="DeleteType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>

<xs:element ref="subsref:Deleteltem" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Deleteltem" type="subsref:DeleteltemType"/>
<xs:complexType name="DeleteltemType">

Liberty Alliance Project

26

Version: 1.0

Liberty Alliance Project:
Liberty ID-WSF Subscriptions and Notifications

<xs:complexContent>
<xs:extension base="dst:DeleteltemBaseType">
<xs:sequence>
<xs:element ref="subsref:Select" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="DeleteResponseType">
<xs:complexContent>
<xs:extension base="lu:ResponseType"/>
</xs:complexContent>
</xs:complexType>
<l--endsec(del)-->
<l--sec(resqry)-->
<xs:element name="Select" type="subsref:SelectType"/>
<xs:element name="ResultQuery" type="subsref:ResultQueryType"/>
<xs:complexType name="ResultQueryType">
<xs:complexContent>
<xs:extension base="dst:ResultQueryBaseType">
<xs:sequence>
<xs:element ref="subsref:Select" minOccurs="0" maxOccurs="1"/>
<xs:element name="Sort" minOccurs="0" maxOccurs="1" type="subsref:SortType"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
<I/xs:complexType>
<xs:element name="ItemData" type="subsref:ltemDataType"/>
<xs:complexType name="ltemDataType">
<xs:complexContent>
<xs:extension base="subsref:AppDataType">
<xs:attributeGroup ref="dst:ItemDataAttributeGroup"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(resqry)-->
<l--sec(subscr)-->
<xs:element name="Subscription" type="subsref: SubscriptionType"/>
<xs:complexType name="SubscriptionType">
<xs:complexContent>
<xs:extension base="subs:SubscriptionType">
<xs:sequence>
<xs:element ref="subsref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="Aggregation" minOccurs="0" maxOccurs="1" type="subsref:AggregationType"/>
<xs:element name="Trigger" minOccurs="0" maxOccurs="1" type="subsref:TriggerType"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(subscr)-->
<l--sec(notif)-->
<xs:complexType name="NotifyType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="subsref:Notification" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attributeGroup ref="subs:NotifyAttributeGroup"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Notification" type="subsref:NotificationType"/>
<xs:complexType name="NotificationType">
<xs:complexContent>
<xs:extension base="subs:NotificationType">
<xs:sequence>

Liberty Alliance Project

27

Version: 1.0

1025

1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

Liberty Alliance Project:
Liberty ID-WSF Subscriptions and Notifications

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="NotifyResponseType">
<xs:complexContent>
<xs:extension base="subs:NotifyResponseType"/>
</xs:complexContent>
</xs:complexType>
<l--endsec(notif)-->
</xs:schema>

8.2. Subscriptions Utility Schema

The formal utility schema follows.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
targetNamespace="urn:liberty:ssos :2006-08"
xmins:subs="urn:liberty:ssos:2006-08"
xmins:lu="urn:liberty: util:2006-08"
xmlins:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:import namespace="urn:liberty:util: 2006-08"
schemal.ocation="liberty-idwsf-utility-v2.0.x sd"/>
<l--sec(subscr)-->
<xs:complexType name="SubscriptionType">
<xs:sequence>
<xs:element ref="subs:Refltem" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="subscriptionID" use="required" type="|u:IDType"/>
<xs:attribute name="notifyToRef" use="required" type="xs:anyURI"/>
<xs:attribute name="adminNotifyToRef" use="optional" type="xs:anyURI"/>
<xs:attribute name="starts" use="optional" type="xs:dateTime"/>
<xs:attribute name="expires" use="optional" type="xs:dateTime"/>
<xs:attribute name="id" use="optional" type="xs:ID"/>
<xs:attribute name="includeData" use="optional">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Yes"/>
<xs:enumeration value="No"/>
<xs:enumeration value="YesWithCommonAttributes"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:element name="Refltem" type="subs:RefltemType"/>
<xs:complexType name="RefltemType">
<xs:attribute name="subscriptionID" use="optional" type="lu:IDType"/>
<xs:attribute ref="lu:itemIDRef" use="required"/>
</xs:complexType>
<l--endsec(subscr)-->
<l--sec(notif)-->
<xs:attributeGroup name="NotifyAttributeGroup">
<xs:attribute name="timeStamp" use="optional" type="xs:dateTime"/>
</xs:attributeGroup>
<xs:complexType name="NotificationType">
<xs:sequence>
<xs:element ref="lu:TestResult" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" use="optional" type="xs:ID"/>

Liberty Alliance Project

28

Version: 1.0

Liberty Alliance Project:
Liberty ID-WSF Subscriptions and Notifications

<xs:attribute name="subscriptionID" use="required" type="|u:IDType"/>
<xs:attribute name="expires" use="optional" type="xs:dateTime"/>
<xs:attribute name="endReason" use="optional" type="xs:anyURI"/>
</xs:complexType>
<xs:complexType name="NotifyResponseType">
<xs:complexContent>
<xs:extension base="lu:ResponseType"/>
</xs:complexContent>
</xs:complexType>
<l--endsec(notif)-->
</xs:schema>

Liberty Alliance Project

29

Version: 1.0

1087

1088

1089
1090

1091
1092

1093
1094

1095
1096
1097

1098
1099

1100
1101

1102
1103

1104
1105
1106

1107
1108

1109
1110
1111

1112
1113

1114

1115
1116

Liberty Alliance Project: Version: 1.0
Liberty ID-WSF Subscriptions and Notifications

References

Normative

[LibertyReg] Kemp, John, eds. "Liberty Enumeration Registry Governance," Version 1.1, Liberty Alliance Project (14
December, 2004 nttp://www.projectliberty.org/specs

[LibertyDST] Kellomaki, Sampo, Kainulainen, Jukka, eds. "Liberty ID-WSF Data Services Template," Version 2.1,
Liberty Alliance Project (30 July, 2006http://www.projectliberty.org/specs

[LibertyDisco] Hodges, Jeff, Cahill, Conor, eds. "Liberty ID-WSF Discovery Service Specification,” Version 2.0,
Liberty Alliance Project (30 July, 2006Mttp://www.projectliberty.org/specs

[LibertySOAPBInding] Hodges, Jeff, Kemp, John, Aarts, Robert, Whitehead, Greg, Madsen, Paul, eds. "Lib-
erty ID-WSF SOAP Binding Specification," Version 2.0, Liberty Alliance Project (30 July, 2006).
http://www.projectliberty.org/specs

[LibertyInteract] Aarts, Robert, Madsen, Paul, eds. "Liberty ID-WSF Interaction Service Specification," Version 2.0,
Liberty Alliance Project (30 July, 2006Mttp://www.projectliberty.org/specs

[LibertySecMech] Hirsch, Frederick, eds. "Liberty ID-WSF Security Mechanisms Core," Version v2.0, Liberty
Alliance Project (30 July, 2006http://www.projectliberty.org/specs

[LibertyGlossary] Hodges, Jeff, eds. "Liberty Technical Glossary," Version v2.0, Liberty Alliance Project (30 July,
2006). http://www.projectliberty.org/specs

[Schemal-2] Thompson, Henry S., Beech, David, Maloney, Murray, Mendelsohn, Noah, eds. (28 October
2004). "XML Schema Part 1: Structures Second Edition," Recommendation, World Wide Web Consortium
http://mww.w3.0org/TR/xmlschema-1/

[RFC2119] S. Bradner "Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119, The Internet
Engineering Task Force (March 199%}tp://www.ietf.org/rfc/rfc2119.txt

[XML] Bray, Tim, Paoli, Jean, Sperberg-McQueen, C. M., Maler, Eve, Yergeau, Francois, eds. (04 February 2004).
"Extensible Markup Language (XML) 1.0 (Third Edition)," Recommendation, World Wide Web Consortium
http://www.w3.0rg/TR/2004/REC-xml-20040204

[XPATH] Clark , J., DeRose , S., eds. (16 November 1999). "XML Path Language (XPath) Version 1.0 "
Recommendation, W3®ttp://www.w3.org/TR/xpatpAugust 2003].

Informative

[LibertyPeopleService] Koga, Yuzo, Madsen, Paul, eds. "Liberty ID-WSF People Service Specification," Version 1.0,
Liberty Alliance Project (30 July, 2006Mttp://www.projectliberty.org/specs

Liberty Alliance Project

30

http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.w3.org/TR/xmlschema-1/
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/xpath
http://www.projectliberty.org/specs

	Liberty ID-WSF Subscriptions and Notifications
	Introduction
	General Rules Regarding Subscriptions and Notifications
	Piggy-Backing Subscriptions to DST Operations
	Subscriptions
	Notifications
	Subscription and Notification Examples
	Checklist for Service Specifications
	Schemata

	References
	Normative
	Informative

