
Liberty ID-WSF Authentication, Single Sign-
On, and Identity Mapping Services
Specification
Version:

2.0-errata-v1.0

Editors:
Jeff Hodges, NeuStar, Inc.
Robert Aarts, Hewlett-Packard
Paul Madsen, NTT
Scott Cantor, Internet2 / The Ohio State University
Contributors:
Conor Cahill, America Online, Inc.
Darryl Champagne, IEEE-ISTO
Gary Ellison, Sun Microsystems, Inc.

Rob

Lockhart
, IEEE-ISTO
Greg Whitehead, Hewlett-Packard
Abstract:

Abstract

This specification defines an ID-WSF Authentication Protocol based on a profile of the Simple Authentication and
Security Layer (SASL) framework mapped onto ID-* SOAP-bound messages. It also defines an ID-WSF Authenti-
cation Service which Identity Providers may offer. This service is based on the authentication protocol. The
authentication service enables Web Services Consumers and/or Liberty-enabled User Agents or Devices to authenticate
with Identity Providers, using various authentication mechanisms, and obtain ID-WSF security tokens. Next, it defines
the ID-WSF Single Sign-On Service, which provides SAML authentication assertions to Web Service Consumers via
profiles of the SAML 2.0 Authentication Request protocol, enabling Web Service Consumers and/or Liberty-enabled
User Agents or Devices to interact with SAML-based services. Finally, it defines the ID-WSF Identity Mapping Service,
which allows Web Service Consumers to obtain identity tokens for use in web service invocations and referencing
principals while preserving privacy.

Filename: liberty-idwsf-authn-svc-2.0-diff-v1.0.pdf

Liberty Alliance Project: Version: 2.0-errata-v1.0
This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

1

Notice1

This document has been prepared by Sponsors of the Liberty Alliance. Permission is hereby granted to use the document2
solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works of this3
Specification. Entities seeking permission to reproduce portions of this document for other uses must contact the Liberty4
Alliance to determine whether an appropriate license for such use is available.5

Implementation of certain elements of this document may require licenses under third party intellectual property rights,6
including without limitation, patent rights. The Sponsors of and any other contributors to the Specification are not and7
shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual8
property rights. This Specification is provided "AS IS", and no participant in the Liberty Alliance makes any9
warranty of any kind, express or implied, including any implied warranties of merchantability, non-infringe-10
ment of third party intellectual property rights, and fitness for a particular purpose. Implementers of this11
Specification are advised to review the Liberty Alliance Project's website (http: //www.projectliberty.org/) for infor-12
mation concerning any Necessary Claims Disclosure Notices that have been received by the Liberty Alliance13
Management Board.14

Copyright © 2007 2FA Technology; Adobe Systems; Agencia Catalana De Certificacio; America Online, Inc.; Amer-15
ican Express Company; Amsoft Systems Pvt Ltd.; Avatier Corporation; BIPAC; BMC Software, Inc.;Axalto; Bank of16
America Corporation; Beta Systems Software AG;BIPAC; British Telecommunications plc; Computer Associates17
International, Inc.; Credentica; DataPower Technology, Inc.; Deutsche Telekom AG, T-Com; Diamelle Technologies,18
Inc.; Diversinet Corp.; Drummond Group Inc.; Enosis Group LLC; Entrust, Inc.; Epok, Inc.; Ericsson; Falkin Systems19
LLC; Fidelity Investments; Forum Systems, Inc.; France Télécom; French Government Agence pour le développement20
de l'administration électronique (ADAE); Fugen Solutions, Inc; Fulvens Ltd.; GSA Office of Governmentwide Policy;21
Gamefederation; Gemalto; General Motors; GeoFederation; Giesecke & Devrient GmbH; Hewlett-PackardGSA Office22
Company; Hochhauserof & Co.,Policy; Hewlett-Packard LLC; IBM Corporation; Intel Corporation; Intuit Inc.; Kant-23
ega; Kayak Interactive; Livo Technologies; Luminance Consulting Services; MasterCard International; MedCommons24
Inc.; Mobile Telephone Networks (Pty) Ltd; NEC Corporation; NTT DoCoMo, Inc.; Netegrity, Inc.; Neustar, Inc.;25
New Zealand Government State Services Commission; Nippon Telegraph and Telephone Corporation; Nokia Corpo-26
ration; Novell, Inc.; NTT DoCoMo, Inc.; OpenNetwork; Oracle Corporation; Ping Identity Corporation; RSA Security27
Inc.; Reactivity Inc.; Royal Mail Group plc; RSA Security Inc.; SAP AG; Senforce; Sharp Laboratories of America;28
Sigaba; SmartTrust; Sony Corporation; Sun Microsystems, Inc.; Supremacy Financial Corporation; Symlabs, Inc.;29
Telecom Italia S.p.A.; Telefónica Móviles, S.A.; Telenor R&D; Thales e-Security; Trusted Network Technologies;30
UNINETT AS; UTI; VeriSign, Inc.; Vodafone Group Plc.; Wave Systems Corp. All rights reserved.31

 Liberty Alliance Project32
 Licensing Administrator33
 c/o IEEE-ISTO34
 445 Hoes Lane35
 Piscataway, NJ 08855-1331, USA36
 info@projectliberty.org37

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

2

http://www.projectliberty.org/

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

3

Contents38

1. Introduction.. 639
2. Notation and Conventions ... 740
2.1. Requirements Keywords... 741
2.2. XML Namespaces... 742
3. Terminology... 943
4. Authentication Protocol ... 1244
4.1. Conceptual Model ... 1245
4.2. Schema Declarations ... 1246
4.3. SOAP Header Blocks and SOAP Binding .. 1247
4.3.1. SOAP Binding ... 1248
4.4. SASL Profile Particulars .. 1349
4.4.1. SASL "Service Name" .. 1350
4.4.2. Composition of SASL Mechanism Names .. 1351
4.5. Authentication Exchange Security .. 1352
4.6. Protocol Messages .. 1353
4.6.1. The <SASLRequest> Message .. 1354
4.6.2. The <SASLResponse> Message ... 1655
4.7. Sequencing of the Authentication Exchange .. 1956
5. Authentication Service.. 2357
5.1. Conceptual Model .. 2358
5.1.1. Stipulating a Particular Authentication Context .. 2359
5.2. URI Declarations .. 2460
5.3. Rules for Authentication Service Providers ... 2461
5.4. Rules for Authentication Service Consumers ... 2562
5.5. Authentication Service Interaction Example .. 2663
6. Single Sign-On Service... 2864
6.1. Conceptual Model ... 2865
6.2. Single Sign-On Service URIs ... 2966
6.3. ID-WSF Enhanced Client or Proxy SSO Profile .. 2967
6.3.1. Profile Overview .. 2968
6.3.2. Profile Description.. 2969
6.4. ID-WSF SAML Token Service Profile .. 3070
6.4.1. Profile Overview .. 3171
6.4.2. Profile Description.. 3172
6.4.3. Use of SAML 2.0 Authentication Request Protocol ... 3273
6.5. Use of Metadata.. 3374
6.6. Inclusion of ID-WSF Endpoint References... 3375
7. Identity Mapping Service ... 3476
7.1. Conceptual Model .. 3477
7.2. Schema Declarations ... 3478
7.3. SOAP Binding.. 3479
7.3.1. Identity Mapping Service URIs .. 3580
7.4. Protocol Messages and Usage ... 3581
7.4.1. Element <IdentityMappingRequest> .. 3582
7.4.2. Element <IdentityMappingResponse> .. 3683
7.5. SAML Identity Tokens... 3884
7.5.1. Assertions ... 3885
7.5.2. Identifiers ... 3986
7.6. Security and Privacy Considerations ... 3987
7.7. Example Identity Mapping Exchange.. 4088
8. Password Transformations: The PasswordTransforms Element .. 4189

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

4

9. Acknowledgments ... 4390
References... 4491
A. Listing of Simple Authentication and Security Layer (SASL) Mechanisms .. 4792
B. Password Transformations .. 4993

1. Truncation.. 4994
2. Lowercase.. 4995
3. Uppercase .. 4996
4. Select .. 4997

C. liberty-idwsf-authn-svc-v2.0.xsd Schema Listing .. 5198
D. liberty-idwsf-idmapping-svc-v2.0.xsd Schema Listing ... 5499
E. liberty-idwsf-utility-v2.0.xsd Schema Listing ... 56100
F. liberty-idwsf-authn-svc-v2.0.wsdl WSDL Listing .. 58101
G. liberty-idwsf-sso-svc-v2.0.wsdl WSDL Listing... 60102
H. liberty-idwsf-idmapping-svc-v2.0.wsdl WSDL Listing... 62103

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

5

1. Introduction104

The Simple Object Access Protocol (SOAP) specifications, [SOAPv1.1] and [SOAPv1.2], define an XML-based105
[XML] messaging paradigm, but do not specify any particular security mechanisms. They do not, in particular, describe106
how one SOAP node may authenticate with another SOAP node via an exchange of SOAP messages. Thus it is left to107
SOAP-based web services frameworks to provide their own notions of security, such as defining how authentication108
is accomplished.109

This specification defines how to perform general identity authentication [WooLam92], also known as peer entity110
authentication [RFC2828], over SOAP, in the context of the Liberty Identity Web Services Framework (ID-WSF)111
[LibertyIDWSFOverview]. Rather than specify the particulars of one or more authentication mechanisms directly in112
this specification, we profile the Simple Authentication and Security Layer (SASL) framework [RFC4422].113

SASL is an approach to modularizing protocol design such that the security design components, e.g., authentication114
and security layer mechanisms, are reduced to a uniform abstract interface. This facilitates a protocol's use of an open-115
ended set of security mechanisms, as well as a so-called "late binding" between implementations of the protocol and116
the security mechanisms' implementations. This late binding can occur at implementation- and/or deployment-time.117
The SASL specification also defines how one packages authentication and security layer mechanisms to fit into the118
SASL framework, where they are known as SASL mechanisms, as well as register them with the Internet Assigned119
Numbers Authority (IANA) [IANA] for reuse.120

This specification is organized as follows. First, it defines the ID-WSF Authentication Protocol. Then, it defines an121
ID-WSF Authentication Service Identity Providers may offer, which is based on the authentication protocol. This122
authentication service enables Web Services Consumers and/or Liberty-enabled User Agents or Devices to authenticate123
with Identity Providers using various authentication mechanisms and obtain ID-WSF security tokens. Next, it defines124
the ID-WSF Single Sign-On Service, which provides SAML authentication assertions to Web Service Consumers via125
profiles of the SAML 2.0 Authentication Request protocol, enabling Web Service Consumers and/or Liberty-enabled126
User Agents or Devices to interact with SAML-based services. Finally, it defines the ID-WSF Identity Mapping Service,127
which allows Web Service Consumers to obtain identity tokens for use in web service invocations and referencing128
principals while preserving privacy.129

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

6

2. Notation and Conventions130

This specification uses schema documents conforming to W3C XML Schema [Schema1-2] and normative text to131
describe the syntax and semantics of XML-encoded protocol messages.132

2.1. Requirements Keywords133

The key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT," "SHOULD," "SHOULD NOT,"134
"RECOMMENDED," "MAY," and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]:135

“They MUST only be used where it is actually required for interoperation or to limit behavior which136
has potential for causing harm (e.g., limiting retransmissions)”137

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application138
features and behavior that affect the interoperability and security of implementations. When these words are not cap-139
italized, they are meant in their natural-language sense.140

2.2. XML Namespaces141

This specification uses the XML namespace prefixes listed in Table 1.142

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

7

Table 1. XML Namespaces used in this specification143

Prefix Namespace

sa: Represents the ID-WSF Authentication Service namespace: urn: liberty: sa: 2006-08

Note

This is the point of definition of this namespace. This namespace is the default
for instance fragments, type names, and element names in this document when
a namespace is not explicitly noted.

disco: Represents the namespace defined in [LibertyDisco].

sec: Represents the namespace defined in [LibertySecMech].

md: Represents the namespace defined in [SAMLMeta2].

pp: Represents the namespace defined in [LibertyIDPP].

s: Represents the SOAP namespace: http: //www.w3.org/2001/12/soap-
envelope, defined in [SOAPv1.1].

saml2: Represents the SAML V2.0 Assertion namespace defined in [SAMLCore2]

samlp2: Represents the SAML V2.0 Protocol namespace defined in [SAMLCore2]

sb: Represents the Liberty namespace defined in [LibertySOAPBinding]

lu: Represents the Liberty ID-WSF utility namespace (see Appendix E).

xs: Represents the W3C XML schema namespace (http: //www.w3.org/2001/XMLSchema)
defined in [Schema1-2].

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

8

3. Terminology144

This section defines key terminology used in this specification. Definitions for these, as well as other Liberty-specific145
terms, may also be found in [LibertyGlossary]. Note that the definition of some terms below differ slightly from the146
definition given in [LibertyGlossary]. For example see the definitions for client and server. This is because in such147
cases, the definition given in [LibertyGlossary] is a more general one, and the definition given here is a narrower one,148
specific to the context of this specification. See also [RFC2828] for overall definitions of security-related terms, in149
general. Other specific references are also cited below.150

authentication Authentication is the process of confirming a system entity's asserted identity with a specified,151
or understood, level of confidence [TrustInCyberspace].152

authentication asser-
tion

A SAML assertion typically consisting of a single <AuthenticationStatement>. The as-153
sertion issuer is stating that the subject of the assertion authenticated with it at some point in154
time. Assertions are typically time-limited [SAMLCore2].155

authentication ex-
change

See authentication protocol exchange.156

authentication mecha-
nism

An authentication mechanism is a particular, identifiable, process or technique that results in157
a confirmation of a system entity's asserted identity with a specified, or understood, level of158
confidence.159

authentication proto-
col exchange

Authentication protocol exchange is the term used in [RFC4422] to refer to the sequence of160
messages exchanged between the client and server as specified and governed by a particular161
SASL mechanism being employed to effect an act of authentication.162

authentication server The precise, specific role played by a server in the protocol message exchanges defined in163
this specification.164

Authentication Serv-
ice (AS)

Short form of "ID-WSF Authentication Service." The AS is a discoverable ID-WSF service.165

Authentication Serv-
ice Consumer

A Web Service Consumer (WSC) implementing the client-side of the ID-WSF Authentication166
Protocol (which is defined in this specification).167

Authentication Serv-
ice Provider (AS Pro-
vider)

A Web Service Provider (WSP) implementing the server-side of the ID-WSF Authentication168
Service defined in this specification (Section 5: Authentication Service).169

client A role assumed by a system entity who either explicitly or implicitly initiates an authentication170
exchange [RFC2828]. Client is implicitly defined in [RFC4422]. Also known as a SASL cli-171
ent.172

discoverable A discoverable "in principle" service is one having a service type URI assigned (this is typi-173
cally in done in the specification defining the service). A discoverable "in practice" service174
is one that is registered in some discovery service instance.175

ID-WSF services are by definition discoverable "in principle" because such services are as-176
signed a service type URI facilitating their registration in Discovery Service instances.177

final SASL response The final <SASLResponse> message sent from the server to the client in an authentication178
exchange.179

ID-WSF EPR An ID-WSF Endpoint Reference is a reference to a service instance. It contains the address,180
security context, and other metadata necessary for contacting the identified service instance.181

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

9

The underlying structure of an ID-WSF EPR is based on the wsa: EndpointReference of182
[WSAv1.0-SOAP] [WSAv1.0].183

initial response A [RFC4422] term referring to authentication exchange data sent by the client in the initial184
SASL request. It is used by a subset of SASL mechanisms. See Section 5.1 of [RFC4422].185

initial SASL request The initial <SASLRequest> message sent from the client to the server in an authentication186
exchange.187

(LUAD-)WSC A Web Service Consumer (WSC) that may or may not also be a Liberty-enabled User Agent188
or Device.189

mechanism A process or technique for achieving a result [Merriam-Webster].190

message thread A message thread is a synchronous exchange of messages in a request-response MEP between191
two SOAP nodes. All the messages of a given message thread are "linked" via each message's192
<wsa: RelatesTo> header block value being set, by the sender, from the previous success-193
fully received message's <wsa: MessageID> header block value.194

requester A system entity which sends a service request to a provider.195

role A function or part performed, especially in a particular operation or process [Merriam-Web-196
ster].197

SASL mechanism A SASL mechanism is an authentication mechanism that has been profiled for use in the198
context of the SASL framework [RFC4422]. See [RFC2444] for a particular example of199
profiling an existing authentication mechanism—one-time passwords [RFC2289]—for use200
in the SASL context. SASL mechanisms are "named"; Mechanism names are listed in the201
column labeled as "MECHANISMS" in [SASLReg] (a copy of this registry document is202
reproduced in Appendix A for informational convenience; implementors should always fetch203
the most recent revision directly from [IANA]).204

server A role donned by a system entity which is intended to engage in defined exchanges with205
clients. This term is implicitly defined in [RFC4422] and in this specification is always syn-206
onymous with authentication server.207

service instance The physical instantiation of a service. A service instance is a web service at a distinct end-208
point.209

Service Provider (SP) (1)A role donned by system entities. In the Liberty architecture, Service Providers interact210
with other system entities primarily via vanilla HTTP.211

(2) From a Principal's perspective, a Service Provider is typically a website providing services212
and/or goods.213

SOAP header block A [SOAPv1.2] term meaning: An [element] used to delimit data that logically constitutes a214
single computational unit within the SOAP header. In [SOAPv1.1] these are known as simply215
SOAP headers, or simply headers. This specification borrows the SOAPv1.2 terminology.216

SOAP node A [SOAPv1.2] term describing system entities who are parties to SOAP-based message ex-217
changes that are, for purposes of this specification, also the ultimate destination of the218
exchanged messages, i.e., SOAP endpoints. In [SOAPv1.1], SOAP nodes are referred to as219
SOAP endpoints, or simply endpoints. This specification borrows the SOAPv1.2 terminology.220

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

10

system entity An active element of a computer/network system. For example, an automated process or set221
of processes, a subsystem, a person or group of persons that incorporates a distinct set of222
functionality [SAMLGloss2].223

user identifier AKA user name or Principal.224

web service Generically, a service defined in terms of an XML-based protocol, often transported over225
SOAP, and/or a service whose instances, and possibly data objects managed therein, are con-226
cisely addressable via URIs.227

As specifically used in Liberty specifications, usually in terms of WSCs and WSPs, it means228
a web service that's defined in terms of the ID-* "stack," and thus utilizes [LibertySOAP-229
Binding], [LibertySecMech], and is "discoverable" [LibertyDisco].230

Web Service Consum-
er

A role donned by a system entity when it makes a request to a web service.231

Web Service Provider A role donned by a system entity when it provides a web service.232

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

11

4. Authentication Protocol233

This section defines the ID-WSF Authentication Protocol. This protocol facilitates authentication between two ID-*234
entities, and is a profile of SASL [RFC4422].235

4.1. Conceptual Model236

The conceptual model for the ID-WSF Authentication Protocol is as follows: an ID-WSF system entity, acting in a237
Web Services Consumer (WSC) role, makes an authentication request to another ID-WSF system entity, acting in a238
Web Service Provider (WSP) role, and if the WSP is willing and able, an authentication exchange will ensue.239

The authentication exchange is comprised of SOAP-bound ID-* messages [LibertySOAPBinding], and can involve an240
arbitrary number of round trips, dictated by the particular SASL mechanism employed [RFC4422]. The WSC may241
have out-of-band knowledge of the server's supported SASL mechanisms, or it may send the server its own list of242
supported SASL mechanisms and allow the server to choose one from among them.243

At the end of this exchange of messages, the WSC will either be authenticated or not, the nature of the authentication244
depending upon the SASL mechanism that was employed. Also depending on the SASL mechanism employed, the245
WSP may be authenticated as well.246

Other particulars, such as how the WSC knows which WSP to contact for authentication, are addressed below in247
Section 6: Single Sign-On Service.248

Note249

This document does not specify the use of SASL security layers.250

4.2. Schema Declarations251

The XML schema [Schema1-2] normatively defined in this section is constituted in the XML Schema file: liberty-252
idwsf-authn-svc-v2.0.xsd, entitled " Liberty ID-WSF Authentication Service XSD v2.0 " (see Appendix C).253

Additionally, Liberty ID-WSF Authentication Service XSD v2.0 imports items from liberty-idwsf-utility-254
v2.0.xsd (see Appendix E: Liberty ID-WSF Utility XSD v2.0), and also from saml-schema-255
protocol-2.0.xsd (see [SAMLCore2]).256

4.3. SOAP Header Blocks and SOAP Binding257

This specification does not define any SOAP header blocks. Section 4.3.1, below, constitutes the SOAP binding state-258
ment for this specification.259

4.3.1. SOAP Binding260

The messages defined below in Section 4.6, e.g., <SASLRequest>, are ordinary ID-* messages as defined in [Liber-261
tySOAPBinding]. They are intended to be bound to the [SOAPv1.1] protocol by mapping them directly into the <s:262
Body> element of the <s: Envelope> element comprising a SOAP message. [LibertySOAPBinding] normatively263
specifies this binding.264

Note265

Implementations of this specification MUST use the "Messaging-specific Header Blocks," as specified in266
[LibertySOAPBinding], to establish a message thread and thus correlate their authentication exchanges. See267
Section 5.5: Authentication Service Interaction Example for an example.268

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

12

4.4. SASL Profile Particulars269

The ID-WSF Authentication Protocol is based on SASL [RFC4422], and thus "profiles" SASL. Section 4 of270
[RFC4422] specifies SASL's "profiling requirements." This section of this specification addresses some particulars of271
profiling SASL that are not otherwise addressed in the sections defining the protocol messages (Section 4.6: Protocol272
Messages), and their sequencing (Section 4.7: Sequencing of the Authentication Exchange).273

4.4.1. SASL "Service Name"274

The SASL "Service Name" specified herein is: idwsf275

4.4.2. Composition of SASL Mechanism Names276

The protocol messages defined below at times convey a SASL mechanism name, or a list of SASL mechanism names,277
as values of message element attributes.278

These mechanism names are typically taken from the column labeled as "MECHANISMS" in [SASLReg], but MAY279
be site-specific.280

These names, and lists of these names, MUST follow these rules:281

• The character composition of a SASL mechanism name MUST be as defined in [IANA]'s SASL Mechanism282
Registry [SASLReg].283

• A list of SASL mechanism names MUST be composed of names as defined above, separated by ASCII space chars284
(hex "20").285

4.5. Authentication Exchange Security286

This authentication protocol features the flexibility of having implementations being able to select at runtime the actual287
authentication mechanism (aka SASL mechanism) to employ. This however may introduce various vulnerabilities288
depending on the actual mechanism employed. Some mechanisms may be vulnerable to passive and/or active attacks.289
Also, since the server selects the SASL mechanism from a list supplied by the client, a compromised server, or a man-290
in-the-middle, can cause the weakest mechanism offered by the client to be employed.291

Thus it is RECOMMENDED that the authentication protocol exchange defined herein (Section 4.7: Sequencing of292
the Authentication Exchange) be employed over a TLS/SSL channel [RFC4346] as amended by [RFC4366]. This will293
ensure the integrity and confidentiality of the authentication protocol messages. Additionally, clients SHOULD au-294
thenticate the server via TLS/SSL validation procedures. This will help guard against man-in-the-middle attacks.295

4.6. Protocol Messages296

This section defines the protocol's messages, along with their message element attribute values, and their semantics.297
The sequencing of protocol interactions, also known as the authentication exchange, is defined below in Section 4.7:298
Sequencing of the Authentication Exchange .299

4.6.1. The <SASLRequest> Message300

Figure 1 shows the schema fragment from Liberty ID-WSF Authentication Service XSD v2.0 describing the301
<SASLRequest> message. This message has the following attributes:302

• mechanism [Required] — Used to convey a list of one-or-more client-supported SASL mechanism names to the303
server, or to signal the server if the client wishes to abort the exchange. It is included on all <SASLRequest>304
messages sent by the client.305

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

13

• authzID [Optional] — The authzID, also known as user identifier or username or Principal, that the client wishes306
to establish as the "authorization identity" per [RFC4422].307

• advisoryAuthnID [Optional] — The advisoryAuthnID may be used to advise the server what authentication308
identity will be asserted by the client via the selected SASL mechanism; i.e., it is a "hint." The309
advisoryAuthnID provides a means for server implementations to optimize their behavior on a per authentication310
identity basis. E.g. if a client requests to execute a certain SASL mechanism on behalf of some given authentication311
identity (represented by advisoryAuthnID) and authorization identity (represented by authzID) pair, the server312
can decide whether to proceed without having to execute the SASL mechanism (execution of which might involve313
more than a single round-trip). Server implementations that make use of the optional advisoryAuthnID attribute314
SHOULD be capable of processing initial <SASLRequest> messages that do not include the315
advisoryAuthnID attribute.316

• Any Attributes [Optional] — Zero or more extension attributes qualified by an XML namespace other than the317
Authentication Service namespace.318

319
 <xs: element name="SASLRequest">320
 <xs: complexType>321
 <xs: sequence>322

323
 <xs: element name="Data" minOccurs="0">324
 <xs: complexType>325
 <xs: simpleContent>326
 <xs: extension base="xs: base64Binary"/>327
 </xs: simpleContent>328
 </xs: complexType>329
 </xs: element>330

331
 <xs: element ref="samlp2: RequestedAuthnContext" minOccurs="0"/> 332

333
 <xs: element name="Extensions" minOccurs="0">334
 <xs: complexType>335
 <xs: sequence>336
 <xs: any namespace="##other" processContents="lax" maxOccurs="unbounded"/>337
 </xs: sequence>338
 </xs: complexType>339
 </xs: element>340
 341
 </xs: sequence>342

343
 <xs: attribute name="mechanism" 344
 type="xs: string" 345
 use="required"/>346

347
 <xs: attribute name="authzID" 348
 type="xs: string" 349
 use="optional"/>350

351
 <xs: attribute name="advisoryAuthnID" 352
 type="xs: string" 353
 use="optional"/>354

355
 <xs: anyAttribute namespace="##other" processContents="lax"/>356

357
 </xs: complexType>358
 </xs: element> 359

Figure 1. <SASLRequest> Message Element — Schema Fragment360

The <SASLRequest> message has the following sub-elements:361

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

14

• <Data> — This element is used by the client to send SASL mechanism data to the server. In [RFC4422] parlance,362
this data is termed a "client response." Its content model is base64-encoded data.363

• <samlp2: RequestedAuthnContext> — This element is used by the client to convey to the server a desired364
authentication context. It is used on only on the initial SASL request (see Section 4.7: Sequencing of the Authen-365
tication Exchange). If present, the server uses the information in the <samlp2: RequestedAuthnContext> in366
combination with mechanism attribute when choosing the SASL mechanism to execute. The background use case367
for <samlp2: RequestedAuthnContext> is presented in Section 5.1: Authentication Service: Conceptual368
Model . See also: [LibertyAuthnContext] and [LibertyProtSchema].369

• <Extensions> — This contains optional request extensions that are agreed upon between the client and server.370
Extension elements MUST be namespace-qualified by a non-AS namespace.371

 372
 <?xml version="1.0" encoding="UTF-8"?>373

374
 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"375
 xmlns: sa="urn: liberty: sa: 2006-08"376
 xmlns: sb="urn: liberty: wsf: soap-bind: 1.0"377
 xmlns: pp="urn: liberty: id-sis-pp: 2003-08">378

379
 <S: Header>380

381
 <!-- various header blocks, as defined in the 382
 SOAP Binding spec, go here -->383

384
 </S: Header>385

386
 <S: Body>387

388
 <sa: SASLRequest sa: mechanism="foo">389
 <sa: Data>390
 qwyGHhSWpjQu5yq......vUUlvONmOZtfzgFz391
 <sa: Data>392
 </sa: SASLRequest>393

394
 </S: Body>395

396
 </S: Envelope>397
 398

Example 1. A SASLRequest Bound into a SOAP Message399

4.6.1.1. <SASLRequest> Usage400

The <SASLRequest> message is used to initially convey to the server a:401

• list of one or more client-supported SASL mechanism names,402

..in combination with optional:403

• authzID attribute, and/or,404

• advisoryAuthnID attribute, and/or,405

• <samlp2: RequestedAuthnContext> element.406

In the case where a single SASL mechanism name is conveyed, the <SASLRequest> message can contain a so-called407
initial response (see Section 5 of [RFC4422]) in the <Data> element.408

If the server's subsequent <SASLResponse> message signals that the authentication exchange should continue—and409
thus contains a server "challenge"—the client will send another <SASLRequest> message, with the <Data> element410

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

15

containing the client's "response" to the challenge. This sequence of server challenges and client responses continues411
until the server signals a successful completion or aborts the exchange.412

The mechanism attribute is used in these intermediate <SASLRequest> messages to signal the client's intentions to413
the server. This is summarized in the next section.414

Section 4.7: Sequencing of the Authentication Exchange , in combination with the next section, normatively defines415
the precise <SASLRequest> message format as a function of the sequencing of the authentication exchange.416

4.6.1.2. Values for mechanism attribute of <SASLRequest>417

The list below defines the allowable values for the mechanism attribute of the <SASLRequest> message element,418
and the resulting message semantics.419

Note420

In items #2 and #1, the mechanism attribute contains one or more SASL mechanism names, respectively.421
The rules noted in Section 4.4.2: Composition of SASL Mechanism Names MUST be adhered to in such422
cases.423

1. Multiple SASL mechanism names — See Example 2. In this case, the <SASLRequest> message MUST NOT424
contain any "initial response" data, and MUST be the initial SASL request. See Section 4.6.2.1.2 for details on425
the returned <SASLResponse> message in this case.426

 427
 <SASLRequest mechanism="GSSAPI OTP PLAIN"/>428
 429

Example 2. <SASLRequest> Specifying Multiple Client-supported Mechanism Names430

2. A single SASL mechanism name — In this case, the <SASLRequest> message MAY contain initial response431
data. See Example 3.432

 433
 <SASLRequest mechanism="GSSAPI">434
 <Data>435
 Q29ub3IgQ2FoaWxsIGNhc3VhbGx5IG1hbmdsZXMgcGFzc3dvcmRzCg==436
 </Data>437
 </SASLRequest>438
 439

Example 3. <SASLRequest> Specifying a Single Mechanism Name440

3. A NULL string ("") — This indicates to the authentication server that the client wishes to abort the authentication441
exchange. See Example 4.442

 443
 <SASLRequest mechanism=""/>444
 445

Example 4. <SASLRequest> Message Aborting the SASL Authentication Exchange446

4.6.2. The <SASLResponse> Message447

Figure 2 shows the schema fragment from Liberty ID-WSF Authentication Service XSD v2.0 describing the448
<SASLResponse> message. This message has the following attributes:449

• serverMechanism [Optional] — The server's choice of SASL mechanism from among the list sent by the client.450

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

16

• Any Attributes [Optional] — Zero or more extension attributes qualified by an XML namespace other than the451
Authentication Service namespace.452

 453
 <xs: element name="SASLResponse">454
 <xs: complexType>455
 <xs: sequence>456

457
 <xs: element ref="Status"/>458

459
 <xs: element ref="PasswordTransforms" minOccurs="0"/>460

461
 <xs: element name="Data" minOccurs="0">462
 <xs: complexType>463
 <xs: simpleContent>464
 <xs: extension base="xs: base64Binary"/>465
 </xs: simpleContent>466
 </xs: complexType>467
 </xs: element>468

469
 <!-- ID-WSF EPRs --> 470
 <xs: element ref="wsa: EndpointReference" 471
 minOccurs="0" 472
 maxOccurs="unbounded"/>473

474
 </xs: sequence> 475

476
 <xs: attribute name="serverMechanism" 477
 type="xs: string" 478
 use="optional"/>479

480
 <xs: anyAttribute namespace="##other" processContents="lax"/>481

482
 </xs: complexType>483
 </xs: element>484
 485

Figure 2. <SASLResponse> Message Element - Schema Fragment486

The <SASLResponse> message has the following sub-elements:487

• <Status> — This element is from Liberty ID-WSF Utility XSD v2.0 and is used to convey status from the server488
to the client. See below.489

• <PasswordTransforms> — This element is used to convey to the client any required password transformations.490
See Section 8: Password Transformations: The PasswordTransforms Element .491

• <Data> — This element is used to return SASL mechanism data to the client. Its content model is base64-encoded492
data.493

• <wsa: EndpointReference> — This element is to convey to the client an ID-WSF EPR for the server, in its494
role as a WSP, upon a successful authentication exchange completion. Multiple instances of it may be used to also495
convey ID-WSF EPRs for additional instances of other services. Note that any credentials returned as a result of a496
successful authentication exchange are conveyed within any returned ID-WSF EPRs [LibertyDisco]. See Sec-497
tion 5: Authentication Service.498

4.6.2.1. <SASLResponse> Usage499

This message is sent by the server in response to a client <SASLRequest> message. It is used to convey "server500
challenges," in [RFC4422] parlance, to the client during an authentication exchange. So-called "client responses" are501
correspondingly conveyed to the server via the <SASLRequest> message, defined above. A given authentication502

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

17

exchange may occur in one "round-trip," or it may involve several round-trips. This depends on the SASL mechanism503
being executed.504

The first <SASLResponse> sent by the server within an authentication exchange (as determined by the particular505
authentication mechanism being used) is explicitly distinguished from subsequent <SASLResponse> messages in506
terms of child elements and attributes. The final <SASLResponse> sent by the server in an authentication exchange507
is similarly distinguished, although with its own particular characteristics. These details are specified below in Sec-508
tion 4.7: Sequencing of the Authentication Exchange .509

It is possible for different authentication mechanisms to be sequenced, the client authenticating to the server with one510
after another. For example, after a principal is authenticated with name and password (e.g., with PLAIN or CRAM-511
MD5), the service may (because of service or user policy) require additional authentication with SECUR-ID.512
Consequently, client implementations should be prepared for a message from the service with a "Continue" status code513
but a different "serviceMechanism" than that established in the previous authentication exchange. The message from514
the service that indicates such subsequent SASL mechanism may contain a <Data> element intended for processing515
by an implementation of the new mechanism. The client should process this message as specified in step 5 of Sec-516
tion 4.7: Sequencing of the Authentication Exchange .517

The <Status> element (see Figure 3) is used to convey the authentication server's assessment of the status of the518
authentication exchange to the client, via the code attribute (the <Status> element is declared in the Liberty ID-WSF519
Utility XSD v2.0).520

 <xs: complexType name="StatusType">521
 <xs: annotation>522
 <xs: documentation> 523
 A type that may be used for status codes. 524
 </xs: documentation>525
 </xs: annotation>526
 <xs: sequence>527
 <xs: element ref="Status" minOccurs="0" maxOccurs="unbounded"/>528
 </xs: sequence>529
 <xs: attribute name="code" type="xs: string" use="required"/>530
 <xs: attribute name="ref" type="IDReferenceType" use="optional"/>531
 <xs: attribute name="comment" type="xs: string" use="optional"/>532
 </xs: complexType>533

534
 <xs: element name="Status" type="StatusType">535
 <xs: annotation>536
 <xs: documentation> 537
 A standard Status type538
 </xs: documentation>539
 </xs: annotation>540
 </xs: element>541

542

Figure 3. <Status> Element and Type - Schema Fragment (from liberty-idwsf-utility-v2.0.xsd)543

In the two sections below, first the values of the code attribute of the <Status> element are discussed, followed by544
discussion of the various forms of <SASLResponse> messages and their semantics.545

4.6.2.1.1. Values for the code attribute of <Status>546

If the value of code is:547

• "Continue" — the server expects the client to craft and send a new <SASLRequest> message containing data548
appropriate for whichever step the execution of the SASL mechanism is at.549

• "OK" — the server considers the authentication exchange to have completed successfully.550

The <SASLResponse> message will typically contain ID-WSF EPR(s) (i.e., <wsa: EndpointReference> ele-551
ment(s)) containing credentials, as described below in Section 5.3: Rules for Authentication Service Providers ,552

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

18

enabling the client to interact further with this provider, for example to invoke another ID-WSF service such as the553
Discovery Service.554

Additionally, the <SASLResponse> message can convey ID-WSF EPRs for other providers.555

See Section 4.7: Sequencing of the Authentication Exchange for the normative specification of the composition556
of the <SASLResponse> message in this case. See also Section 5.3: Rules for Authentication Service Provid-557
ers .558

• "Abort" — the server is aborting the authentication exchange. It will not send any more messages on this message559
thread.560

4.6.2.1.2. Returning the Server's Selected SASL Mechanism561

The server will choose one SASL mechanism from among the intersection of the list sent by the client and the server's562
set of supported and willing-to-execute SASL mechanisms. It will return the name of this selected SASL mechanism563
as the value for the serverMechanism attribute on the initial <SASLResponse> message. See Example 5.564

 565
 <SASLResponse serverMechanism="DIGEST-MD5">566
 <Status code="Continue"/>567
 <Data>568
 Q29ub3IgQ2FoaWxsIGNhc3VhbGx5IG1hbmdsZXMgcGFzc3dvcmRzCg==569
 </Data>570
 </SASLResponse>571
 572

Example 5. <SASLResponse> Indicating Server's Chosen SASL Mechanism573

If there is no intersection between the client-supplied list of SASL mechanisms and the set of supported, and willing-574
to-execute, server-side SASL mechanisms, then the server will return a <SASLResponse> message with a code575
attribute whose value is "Abort." See Example 6, and also item #3 in Section 4.7: Sequencing of the Authentication576
Exchange .577

 578
 <SASLResponse>579
 <Status code="Abort"/>580
 </SASLResponse>581
 582

Example 6. <SASLResponse> Indicating a Server-side Abort583

4.7. Sequencing of the Authentication Exchange584

The authentication exchange is sequenced as follows:585

1. The authentication exchange MUST begin by the client sending the server a <SASLRequest> message. This586
message:587

• MUST contain a mechanism attribute whose value is a string containing one or more SASL mechanisms the588
client supports and is prepared to negotiate (see Section 4.6.1.2: Values for mechanism attribute of589
<SASLRequest>).590

• MAY contain a <Data> element containing an initial response, specific to the cited SASL mechanism, if the591
mechanism attribute contains only a single SASL mechanism. See section 5 of [RFC4422].592

• MAY contain a <samlp2: RequestedAuthnContext> element.593

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

19

• SHOULD contain an authzID attribute whose value is an identifier string for the Principal being authenti-594
cated.595

• MAY contain an advisoryAuthnID attribute whose value is an identifier asserted by the client to represent596
the authentication identity being established by this authentication event.597

2. If the server is prepared to execute, with this client, at least one of the SASL mechanism(s) cited by the client in598
the previous step, then processing continues with step 4.599

3. Otherwise, the server does not support, or is not prepared to negotiate, any of the SASL mechanisms cited by the600
client. The server MUST respond to the client with a <SASLResponse> message containing:601

• A <Status> element with a code attribute with a value of "Abort."602

• No <PasswordTransforms> element.603

• No <Data> element.604

• No <wsa: EndpointReference> element.605

• No serverMechanism attribute.606

After this message is sent to the client, processing continues with step 7.607

4. The server sends to the client a <SASLResponse> message.608

If this message is the first <SASLResponse> sent to the client in this authentication exchange (as determined by609
a particular authentication mechanism, see substep "A. Continue," below), this message:610

• MUST contain a serverMechanism attribute whose value is a single SASL mechanism name, chosen by the611
server from the list sent by the client.612

• MAY contain a <Data> element containing a SASL mechanism-specific challenge.613

• MAY contain a <PasswordTransforms> element. See Section 8: Password Transformations: The614
PasswordTransforms Element for details on the client's subsequent obligations in this case.615

• MUST contain a <Status> element with a code attribute whose value is given by either item A, or B, or616
C:617

A. "Continue" — either the execution of the SASL mechanism is not complete or the authentication ex-618
change was successful but the server expects the client to authenticate again using a different authenti-619
cation mechanism; the server expects the client to process this message and respond.620

If the server is indicating that the client should continue by authenticating with a different mechanism,621
the server MUST specify the desired mechanism as the value for "serverMechanism." The authentication622
mechanism specified MUST be taken from the list previously sent by the client in the prior authentication623
exchange. The server MAY include a <Data> element (and <PasswordTransforms>) with content624
appropriate for the new authentication mechanism.625

If the reason for the server indicating that the client should continue is that the client presented invalid626
credentials, the server SHOULD include a second level status <Status627
code="InvalidCredentials">. The server MAY also return a <Data> element (e.g., with a new628
challenge according to the mechanism already established) and the client can respond according to the629
mechanism. Processing continues with step 5.630

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

20

B. "OK" — the server declares the authentication exchange has completed successfully.631

In this case, this final SASL response message can contain, in addition to the items listed above, <wsa:632
EndpointReference> element(s), containing requisite credentials. This is specified in Section 5.3:633
Rules for Authentication Service Providers .634

Processing continues with step 6.635

C. "Abort" — the server declares the authentication exchange has completed unsuccessfully. For example,636
the user may have supplied incorrect information, such as an incorrect password. See step 7, below, for637
additional information.638

In this case, this <SASLResponse> message MUST NOT contain any <wsa: EndpointReference>639
element(s).640

Processing continues with step 7.641

Otherwise, this message:642

• MUST NOT contain a serverMechanism attribute.643

• MAY contain a <Data> element containing a SASL mechanism-specific challenge.644

• MUST NOT contain a <PasswordTransforms> element.645

• MUST contain a <Status> element with a code attribute whose value is given by either item A, or B, or646
C:647

A. "Continue" — the execution of the SASL mechanism is not complete; the server expects the client to648
process this message and respond. Processing continues with step 5.649

B. "OK" — the server declares the authentication exchange has completed successfully.650

In this case, this "final response" <SASLResponse> message can contain, in addition to the items listed651
above, <wsa: EndpointReference> element(s) with requisite credentials. This is specified in Sec-652
tion 5.3: Rules for Authentication Service Providers .653

Processing continues with step 6.654

C. "Abort" — the server declares the authentication process has completed unsuccessfully. For example,655
the user may have supplied incorrect information, such as an incorrect password.656

If the reason for the server aborting is that the client presented invalid credentials, the server SHOULD657
include a second level status <Status code="InvalidCredentials">.658

In this case, this <SASLResponse> message MUST NOT contain any <wsa: EndpointReference>659
element(s).660

Processing continues with step 7.661

5. The client sends the server a <SASLRequest> message. This message:662

• SHOULD contain a mechanism attribute set to the same value as sent by the server, as the value of the663
serverMechanism attribute, in its first <SASLResponse> message (see Section 4.6.2.1.2: Returning the664
Server's Selected SASL Mechanism).665

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

21

Note666

The client MAY, however, choose to abort the authentication exchange by setting the mechanism667
attribute to either a "null" string, or to a mechanism name different than the one returned by the server668
in its first <SASLResponse> message.669

If the client chooses to abort, processing continues with step 8.670

• SHOULD contain a <Data> element containing data specific to the cited SASL mechanism.671

• MUST NOT contain a <samlp2: RequestedAuthnContext> element.672

Processing continues with steps 4 and 5 until the server signals success, failure, or aborts — or the client aborts673
the exchange using the technique noted in the first bullet item, above, of this step.674

6. The authentication exchange has completed successfully. The client is now authenticated in the server's view, and675
the server may be authenticated in the client's view, depending upon the SASL mechanism employed. Sec-676
tion 5.1: Authentication Service: Conceptual Model discusses what the next interaction steps between the client677
and server are in the ID-WSF authentication service case.678

7. The authentication exchange has completed unsuccessfully due to an exception on the server side. The client679
SHOULD cease sending messages on this message thread.680

The reasons for an authentication exchange failing are manifold. Often it is simply a case of the user having681
supplied incorrect information, such as a password or pass phrase.passphrase. Or, there may have been a problem682
on the server's part, such as an authentication database being unavailable or unreachable.683

8. The client aborted the authentication exchange.684

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

22

5. Authentication Service685

The ID-WSF Authentication Service provides web service-based authentication facilities to Web Service Consumers686
(WSCs). This service is built around the SASL-based ID-WSF Authentication Protocol as specified above in Sec-687
tion 4.688

This section first outlines the Authentication Service's conceptual model and then defines the service itself.689

5.1. Conceptual Model690

ID-WSF-based Web Service Providers (WSPs) may require requesters, AKA Web Service Consumers (WSCs), to691
present security tokens in order to successfully interact (security token specifics, are specified in [LibertySecMech]).692

A Discovery Service [LibertyDisco], which itself is just a WSP, is able to create security tokens authorizing WSCs to693
interact with other WSPs, on whose behalf a Discovery Service has been configured to speak. Also, Discovery Service694
instances might themselves be configured to require WSCs to present security tokens when making requests of them.695

The ID-WSF Authentication Service addresses the above conundrum by providing the means for WSCs to prove their696
identities—to authenticate—and obtain security tokens enabling further interactions with other services, at the same697
provider, on whose behalf the Authentication Service instance is authorized to speak. These offered services may be,698
for example, a Discovery Service or Single Sign-On Service. WSCs may then use these latter services to discover and699
become capable of interacting with yet other services.700

Note that although an Authentication Service itself does not require requesters to present security tokens in order to701
interact with it, an Authentication Service may, in some situations, be configured to understand presented security702
tokens and use them when applying policy.703

5.1.1. Stipulating a Particular Authentication Context704

In some situations, a WSC may need to stipulate some of the properties for an authentication exchange. A scenario705
illustrating a use case of this is:706

Suppose a Principal is wielding a Liberty-enabled user agent or device (LUAD) that is acting as a707
WSC (i.e., a LUAD-WSC). The Principal authenticates with her bank, say, and authenticates via the708
ID-WSF authentication service using some authentication mechanism, such as PLAIN [SASLReg].709
At some point, the Principal wants to transfer a large sum of money to the Fund for Poor Specification710
Editors (using some (fictitious) ID-SIS-based web service), and the bank's system indicates to the711
LUAD-WSC that the Principal's present authentication is "inappropriate." The bank's system also712
includes a <RequestedAuthnContext>.713

Now, the LUAD-WSC "knows" that it needs to help the Principal reauthenticate—as her present714
credentials aren't being honored for the financial transaction she wishes to carry out. So the LUAD-715
WSC prompts the Principal for permission to reauthenticate her, and (assuming the answer was "yes")716
initiates the ID-WSF Authentication Protocol with the appropriate authentication service provider,717
and includes the supplied-by-the-bank <RequestedAuthnContext>. The authentication service718
provider factors the requested authentication context into its selection of SASL mechanism for the719
ensuing authentication exchange. And upon successful authentication, the Principal is able to suc-720
cessfully make the funds transfer.721

When initiating an authentication exchange, a WSC can stipulate some properties for the ensuing authentication event,722
and thus the subsequently issued (if successful) credentials. It does this by including a723
<RequestedAuthnContext> in the initial <SASLRequest>.724

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

23

5.2. URI Declarations725

The URI declarations for the ID-WSF Authentication Service are given below in Table 2.726

Table 2. Authentication Service URIs727

Use URI

Service Type urn: liberty: sa: 2006-08

SASLRequest wsa: Action urn: liberty: sa: 2006-08: SASLRequest

SASLResponse wsa: Action urn: liberty: sa: 2006-08: SASLResponse

5.3. Rules for Authentication Service Providers728

Providers offering ID-WSF Authentication Services MUST adhere to the following rules:729

1. Authentication Service Providers (AS Providers) MUST implement the ID-WSF Authentication Protocol, as730
defined in Section 4: Authentication Protocol . The Authentication Service Provider MUST play the role of the731
authentication server.732

2. Upon successful completion of an authentication exchange the first ID-WSF EPR, as materialized as an <wsa:733
EndpointReference> element instance and contained in the final SASL response, SHOULD refer to services734
at the Authentication Service provider—i.e., at the "same provider"—that said AS Provider can offer to the Au-735
thentication Service consumer.736

For example, Identity Providers may often also include an ID-WSF EPR for the Discovery Service of the Principal737
just authenticated, as well as ID-WSF EPRs for other offered services, such as an SSO Service.738

Note739

If the Authentication Service is invoked via a message whose indicated "framework version" [Liberty-740
SOAPBinding] is "2.0," then if the AS is returning ID-WSF EPRs for other services as noted above, then741
the AS SHOULD return ID-WSF EPRs for ID-WSFv2.0 services, rather than other versions of ID-WSF742
services.743

See Section 4.7: Sequencing of the Authentication Exchange , Step 4.744

The Provider MAY also include additional ID-WSF EPRs referring to services offered by other providers—i.e.,745
providers other than the AS Provider.746

3. Any included credentials SHOULD be useful for a reasonable time (note that credentials will be contained within747
the ID-WSF EPRs, as profiled in [LibertyDisco]). Even if the AS Consumer recently authenticated with the748
Authentication Service, i.e., an earlier issued credential for consumption by the AS Provider is still valid, the AS749
Provider SHOULD issue credential(s) that have later expiration times than the earlier issued credential(s). The750
AS Provider MAY choose to re-authenticate, using any of the available SASL mechanisms, or issue new creden-751
tials without a engaging in an authentication exchange. This can be accomplished by responding to the AS752
Consumer's initial SASL request with a final SASL response containing an ID-WSF EPR, itself containing the753
requisite credentials.754

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

24

Note755

Credentials containing <saml2: AuthnStatement>(s) should have their <saml2: AuthnInstant>756
(s) set to the time when the authentication event actually took place. See [SAMLCore2].757

4. Additionally, if the first <SASLRequest> in an exchange contains a <samlp2: RequestedAuthnContext>758
element, then upon successful authentication, the Authentication Service MUST either: return credentials (em-759
bedded within returned ID-WSF EPR(s)) that satisfy the <samlp2: RequestedAuthnContext>, or, abort the760
authentication exchange. See [SAMLCore2] for a detailed description of the processing rules governing evaluation761
of the <samlp2: RequestedAuthnContext> element.762

5. An Authentication Service instance SHOULD be deployed such that the security mechanism [LibertySec-763
Mech]:764

urn: liberty: security: 2003-08: TLS: null765

can be used by the WSC.766

Note767

In practice this means that the Authentication Service should be exposed on an endpoint for which the768
URL should have https as the protocol field.769

6. An Authentication Service implementation SHOULD support the following SASL mechanisms [SASLReg]:770
PLAIN, CRAM-MD5.771

5.4. Rules for Authentication Service Consumers772

WSCs implementing the client-side of the ID-WSF Authentication Protocol, and thus also known as Authentication773
Service Consumers (AS Consumers), MUST adhere to the following rules:774

1. AS Consumers MUST implement the ID-WSF Authentication Protocol, as defined in Section 4: Authentication775
Protocol in the role of the client.776

Note777

The AS Consumer may include various SOAP header blocks, e.g., a <wsse: Security> element778
[LibertySecMech] which can house a security token(s) obtained earlier from an Authentication Service779
or Discovery Service [LibertyDisco]. In such a case, the Authentication Service SHOULD evaluate the780
presented security token(s) in combination with applicable policy, as a part of the overall authentication781
event. This provides a means, for example, of "security token renewal."782

2. In case the AS Consumer has not been provisioned with the <disco: SecurityMechID> for the Authentication783
Service instance that it uses, the AS Consumer SHOULD assume that the required security mechanism is this784
one:785

urn: liberty: security: 2003-08: TLS: null786

Note787

<disco: SecurityMechID> elements are contained within the <disco: SecurityContext> element788
(s), themselves occurring within ID-WSF EPRs (profiled <wsa: EndpointReference>s) [LibertyDis-789
co]).790

Only when the endpoint URL of the Authentication Service is prescribed to have http as the protocol MAY the791
WSC presume a security mechanism of:792

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

25

urn: liberty: security: 2003-08: null: null793

3. It is RECOMMENDED that the WSC support the password transformations specified in Appendix B .794

5.5. Authentication Service Interaction Example795

Example 7 through Example 10 illustrate an example exchange between a LUAD-WSC and an ID-WSF Authentication796
Service (AS). The AS includes information about the Discovery Service (DS) in its final response. Here the DS is797
offered by the same provider.798

 799
<s: Envelope xmlns: s="http: //schemas.xmlsoap.org/soap/envelope/">800
 <s: Header>801
 ...802
 </s: Header>803
 <s: Body>804
 <SASLRequest mechanism="CRAM-MD5" 805
 advisoryAuthnID="358408021451" 806
 xmlns="urn: liberty: sa: 2004-04" />807
 </s: Body>808
</s: Envelope>809
 810

Example 7. The WSC sends a <SASLRequest> on behalf of a Principal, asserting that the authentication identity is811
"358408021451" and indicates it desire to use the "CRAM-MD5" SASL mechanism.812

 813
<S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/">814
 <S: Header>815
 ...816
 </S: Header>817
 <S: Body>818
 <SASLResponse serverMechanism="CRAM-MD5" 819
 xmlns="urn: liberty: sa: 2004-04">820
 <Status code="continue"/>821
 <Data>822
 ...a CRAM-MD5 challenge here...823
 </Data>824
 </SASLResponse>825
 </s: Body>826
</s: Envelope>827
 828

Example 8. The AS replies, agreeing to use CRAM-MD5, and issues a CRAM-MD5 challenge.829

 830
<s: Envelope xmlns: s="http: //schemas.xmlsoap.org/soap/envelope/">831
 <s: Header>832
 ...833
 </s: Header>834
 <s: Body>835
 <SASLRequest mechanism="CRAM-MD5" 836
 xmlns="urn: liberty: sa: 2004-04">837
 <Data>838
 ...some CRAM-MD5 response here...839
 <Data>840
 </SASLRequest>841
 </s: Body>842
</s: Envelope>843
 844

Example 9. The WSC responds with a CRAM-MD5 response.845

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

26

 846
<S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/">847
 <S: Header>848
 ...849
 </S: Header>850
 <S: Body id="msgBody">851

852
 <sa: SASLResponse xmlns: sa="urn: liberty: sa: 2004-04" 853
 xmlns: disco="urn: liberty: disco: 2003-08">854
 <Status code="sa: OK"/>855

856
 <wsa: EndpointReference>857

858
 <wsa: Address>859
 http: //tg2.example.com: 8080/tfs-soap/IdPDiscoveryService860
 </wsa: Address>861

862
 <wsa: Metadata>863

864
 <disco: ServiceType>urn: liberty: disco: 2003-08</disco: ServiceType>865

866
 <disco: ProviderID>http: //tg2.example.com: 8080/tfs</disco: ProviderID>867

868
 <ds: SecurityContext>869

870
 <disco: SecurityMechID>871
 urn: liberty: security: 2005-02: null: Bearer872
 </disco: SecurityMechID>873

874
 <sec: Token>875
 <saml2: Assertion 876
 ID="i1b42508103cab657f34e5ef189f28ea10dd86926" 877
 Version="2.0"878
 IssueInstant="2004-02-03T22: 12: 33Z">879
 <Issuer>880
 http: //tg2.trustgenix.com: 8080/tfs881
 </Issuer>882
 883
 884
 </saml2: Assertion>885
 </sec: Token>886

887
 </ds: SecurityContext>888

889
 </wsa: Metadata>890

891
 </wsa: EndpointReference>892

893
 </sa: SASLResponse>894

895
 </S: Body>896
</S: Envelope>897
 898

Example 10. The AS replies with its "final" <SASLResponse> message, which includes credentials with which the WSC899
may subsequently use to invoke a DS.900

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

27

6. Single Sign-On Service901

The ID-WSF Single Sign-On Service (SSO Service, or SSOS) provides requesters with an ID-WSF-based means to902
obtain SAML 2.0 authentication assertions enabling them to interact with SAML 2.0 Service Providers (SPs) [SAML-903
Core2] as well as other services that accept SAML 2.0 assertions as security tokens, such as web services (including904
ID-WSF WSPs). The SSOS is based on a pair of profiles of the SAML 2.0 Authentication Request protocol [SAML-905
Core2], one of which is a refinement of the SAML 2.0 Enhanced Client or Proxy SSO profile [SAMLProf2].906

This section first outlines the ID-WSF SSO Service's conceptual model and then defines the SSO Service in terms of907
the SAML profiles it supports.908

6.1. Conceptual Model909

In the Liberty architecture, it is conceivable for any concrete system entity to don any architectural role that it is910
physically capable of bearing. For example, a Liberty Service Provider (SP) is essentially just a SAML 2.0 SSO-enabled911
web site.website. Such Service Providers can also be simultaneously cast into WSC and WSP roles.912

Similarly, user agents in the Liberty architecture range from standard web browsers, to modestly Liberty-enabled913
browsers (ECPs), to arbitrarily complex SOAP-based clients. These latter user agents, termed Liberty-enabled User914
Agents or Devices (LUADs) will conceivably be dynamically cast into the full range of Liberty architectural roles;915
they will be called upon to be a browser one moment, and a WSC the next, and even a WSP at times.916

As noted in Section 5, a (LUAD-)WSC that needs to obtain security tokens in order to interact with a Discovery Service917
(and subsequently other ID-WSF services) can utilize an ID-WSF Authentication Service to obtain the requisite security918
tokens. However, not all useful services (SOAP-based or otherwise) that accept SAML security tokens will be registered919
with a Discovery Service. Furthermore, SAML 2.0 SSO-enabled web sites often rely on the ability to issue requests920
for authentication directly to less capable clients and expect them to relay the request and subsequent response. LUADs921
thus need a way to participate in that exchange.922

Another class of use cases involves calls by one principal (or a WSC acting on behalf of a principal) to invoke services923
belonging to another principal. These so-called cross-principal invocations often require a WSC to utilize the invoking924
principal's Single Sign-On Service to obtain security tokens for the target principal's Discovery Service or other ID-925
WSF services.926

The ID-WSF Single Sign-On Service addresses these use cases with profiles of the SAML 2.0 Authentication Request927
protocol [SAMLCore2] Two distinct, but similar, profiles are defined in order to address differences that arise in the928
content of security tokens, and protocol processing behavior that is specific to SAML 2.0 SSO SPs. The profile ad-929
dressing these SPs is a refinement or specialization of the existing SAML 2.0 Enhanced Client/Proxy SSO Profile930
[SAMLProf2]. A SAML 2.0 SP can treat a LUAD in the same way as any other enhanced client. A second, more931
generic, profile permits a LUAD to obtain SAML assertions useful in accessing other kinds of services, including use932
cases defined in the future.933

In both profiles, requesters authenticate to the SSOS using ID-WSF security mechanisms, making the SSOS itself an934
ID-WSF service. A LUAD wishing to interact with the SSOS can use the Authentication Service at an Identity Provider935
(IdP) to obtain security tokens that enable it to invoke the SSOS at that IdP in order to obtain additional security tokens936
to convey to SAML 2.0 SPs or other SAML-enabled services.937

In fact, if a LUAD successfully authenticates with an IdP via the IdP's Authentication Service Section 5, the IdP can938
ensure that the LUAD will have in its possession an ID-WSF EPR (a profiled <wsa: EndpointReference>; [Lib-939
ertyDisco]), containing any necessary credentials, for the ID-WSF Single Sign-On Service at the same IdP, simplifying940
the process of invoking the SSOS. Additionally, the IdP can, at the same time, ensure that the LUAD possesses an ID-941
WSF EPR containing any necessary credentials for the Discovery Service (DS) of the Principal wielding the LUAD,942
thus enabling the LUAD to simultaneously utilize SAML and ID-WSF-based services on behalf of the Principal based943
on one sign-on interaction, from the Principal's perspective.944

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

28

6.2. Single Sign-On Service URIs945

Table 3. Single Sign-On Service URIs946

Use URI

Service Type urn: liberty: ssos: 2006-08

AuthnRequest wsa: Action urn: liberty: ssos: 2006-08: AuthnRequest

Response wsa: Action urn: liberty: ssos: 2006-08: Response

6.3. ID-WSF Enhanced Client or Proxy SSO Profile947

The SAML 2.0 Enhanced Client or Proxy SSO Profile [SAMLProf2] enables SSO to web sites by SAML-aware clients,948
but leaves the authentication of the client to the IdP out of scope. This profile is a refinement that adds the ID-WSF949
SOAP Binding [LibertySOAPBinding] and Security Mechanisms [LibertySecMech] specifications to the communi-950
cation with the IdP, enabling a LUAD to participate in SSO to SAML 2.0-enabled web sites.951

6.3.1. Profile Overview952

As introduced above, this profile is simply a constrained version of the interactions specified in [SAMLProf2]. Spe-953
cifically, it adds additional requirements to steps 4-6 of the ECP Profile, which involve the interactions between the954
IdP and the client. In all other respects, all processing rules defined by the base profile, and in turn the underlying955
SAML 2.0 Browser SSO Profile are observed. In particular, note that the content of the SAML protocol messages and956
assertion(s) used in this constrained version are entirely unchanged from [SAMLProf2].957

6.3.2. Profile Description958

The following sections provide detailed definitions of the individual steps. Except where noted, the steps and processing959
rules are as specified in the ECP Profile [SAMLProf2].960

1. LUAD issues HTTP Request to Service Provider961

Step 1 is identical to step 1 of the ECP Profile, but MAY be omitted in cases in which the LUAD wishes to962
construct the request to the IdP itself and possesses sufficient knowledge of the SP to do so.963

2. Service Provider issues <samlp2: AuthnRequest> to Identity Provider via LUAD964

Step 2 is identical to step 2 of the ECP Profile, but note that the <samlp2: AuthnRequest> message MAY be965
constructed independently by the LUAD rather than obtained from the SP. From the perspective of the SP, the966
eventual response in step 7 will be treated as unsolicited.967

3. LUAD Determines Identity Provider968

Step 3, out of scope in the ECP Profile, is similarly out of scope here.969

4. LUAD forwards <samlp2: AuthnRequest> to Identity Provider970

In step 4, the <samlp2: AuthnRequest> message is sent to the selected IdP's ID-WSF Single Sign-On Service971
endpoint using the Liberty SOAP binding [LibertySOAPBinding]. This message MUST be authenticated using972
a security mechanism defined by [LibertySecMech].973

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

29

When communicating with the Identity Provider, the client MUST adhere to the Liberty SOAP binding as specified974
in [LibertySOAPBinding]; in case of conflict with the SOAP binding as specified in [SAMLBind2] the Liberty975
SOAP Binding shall take precedence.976

Note977

The client MAY (and generally will) include various other header blocks, e.g., a <wsse: Security>978
header block [LibertySecMech] [wss-sms]. Such a header block could contain a security token obtained979
from the ID-WSF Authentication Service.980

Note that the <samlp2: AuthnRequest> message may also be signed by the SP (or the LUAD if constructed by981
it). In this and other respects, the message rules specified in the SAML 2.0 Browser SSO profile in Section 4.1.4.1982
of [SAMLProf2] MUST be observed.983

5. Identity Provider Identifies Principal984

In step 5, the ID-WSF peer-entity authentication mechanism used by the LUAD in step 4 MUST be used to identify985
the Principal.986

6. Identity Provider issues <samlp2: Response> message to Service Provider via LUAD987

Step 6 is identical to step 6 of the ECP Profile, except for the use of the Liberty SOAP Binding during the exchange.988
The SSOS SHOULD NOT respond in step 6 with any content other than SOAP. For example, the MIME type of989
the HTTP response must be set according to [LibertySOAPBinding].990

Note991

This is different from the SAML 2.0 ECP profile [SAMLProf2] in which an IdP is permitted to respond992
with any content acceptable to the requester during the authentication process.993

The SSOS MAY take advantage of various optional header blocks defined in [LibertySOAPBinding]. For exam-994
ple, instead of attempting to establish a local session via an HTTP cookie, the SSOS may include a <disco:995
SecurityContext> element in an <sb: EndpointUpdate> header block. The requester must of course un-996
derstand such header blocks.997

7. LUAD forwards <samlp2: Response> to Service Provider998

Step 7 is identical to step 7 of the ECP Profile. When the client receives the <samlp2: Response> message from999
the IdP, it MUST NOT forward it to any location other than that specified in the1000
AssertionConsumerServiceURL attribute contained in the mandatory <ecp: Response> header block re-1001
ceived from the IdP.1002

Note however that in the case that the LUAD initiated the profile by constructing the <samlp2:1003
AuthnRequest> message in step 2, then there is no explicit comparison to be made against the1004
AssertionConsumerServiceURL attribute in the ECP Response header block.1005

8. Service Provider Grants or Denies Access to Principal1006

Step 8 is identical to step 8 of the ECP profile.1007

6.4. ID-WSF SAML Token Service Profile1008

The SAML Token Service Profile is an ID-WSF-based profile of the SAML 2.0 Authentication Request protocol1009
[SAMLCore2] that permits a requester to obtain SAML assertions for use by one or more relying parties. Relying1010
parties might be ID-WSF-based web services, generically defined web services, or other application services that1011
support SAML. The profile is a direct exchange between the requester and the IdP offering the token service using the1012

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

30

ID-WSF SOAP Binding [LibertySOAPBinding] and is authenticated using the ID-WSF Security Mechanisms speci-1013
fication [LibertySecMech].1014

6.4.1. Profile Overview1015

As introduced above, this profile uses the SAML 2.0 Authentication Request protocol [SAMLCore2] to enable an IdP1016
to offer a relatively unconstrained capability to issue SAML assertions containing authentication and other information1017
as security tokens for use by the requester with specified relying parties. Unlike the SSO-oriented profiles defined in1018
[SAMLProf2] and the previous section, this profile directly involves only two parties: the requester (e.g., a LUAD)1019
and the IdP. The client in this profile is the actual requester, rather than an intermediary between the IdP and the eventual1020
relying party.1021

Operationally, another difference between this profile and the SSO profiles relates to the content of the SAML assertions1022
that can be issued. Other than a few basic assumptions, the IdP is generally expected to have sufficient knowledge of1023
the relying parties identified by the requester so as to support the issuance of appropriately constructed assertions1024
supporting those parties' requirements. The means by which it can obtain such knowledge are out of scope, and could1025
include the out of band exchange of policy information, direct configuration, or it may rely on the requester to indicate1026
to it what kinds of information to include.1027

This profile is a combination of the SAML Authentication Request protocol and the ID-WSF SOAP Binding [Liber-1028
tySOAPBinding] and Security Mechanisms [LibertySecMech] specifications, along with a few guidelines on the use1029
of the <samlp2: AuthnRequest> message.1030

6.4.2. Profile Description1031

The following sections provide detailed definitions of the individual steps.1032

1. Requester issues <samlp2: AuthnRequest> to Identity Provider1033

In step 1, the requester sends its <samlp2: AuthnRequest> message to the selected IdP's ID-WSF Single Sign-1034
On Service endpoint using the Liberty SOAP binding [LibertySOAPBinding]. This message MUST be authen-1035
ticated using a security mechanism defined by [LibertySecMech].1036

When communicating with the Identity Provider, the client MUST adhere to the Liberty SOAP binding as specified1037
in [LibertySOAPBinding]; in case of conflict with the SOAP binding as specified in [SAMLBind2] the Liberty1038
SOAP Binding shall take precedence.1039

Note1040

The client MAY (and generally will) include various other header blocks, e.g., a <wsse: Security>1041
header block [LibertySecMech] [wss-sms]. Such a header block could contain a security token obtained1042
from the ID-WSF Authentication Service.1043

2. Identity Provider Identifies Principal1044

In step 2, the ID-WSF peer-entity authentication mechanism used by the requester in step 1 MUST be used to1045
identify the requesting Principal.1046

3. Identity Provider issues <samlp2: Response> message to Requester1047

In step 3, the IdP returns a <samlp2: Response> message to the requester containing the status and any SAML1048
assertion(s) issued as a result of the request. The SSOS SHOULD NOT respond with any content other than SOAP.1049
For example, the MIME type of the HTTP response must be set according to [LibertySOAPBinding].1050

The SSOS MAY take advantage of various optional header blocks defined in [LibertySOAPBinding]. For exam-1051
ple, instead of attempting to establish a local session via an HTTP cookie, the SSOS may include a <disco:1052

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

31

SecurityContext> element in an <sb: EndpointUpdate> header block. The requester must of course un-1053
derstand such header blocks.1054

6.4.3. Use of SAML 2.0 Authentication Request Protocol1055

This profile is based on the SAML 2.0 Authentication Request protocol defined in [SAMLCore2]. In the nomenclature1056
of actors enumerated in Section 3.4 of that document, the requester is the SAML requester, presenter, and the attesting1057
entity, and is generally the requested subject. Relying parties may be identified in the request but are not a party to the1058
profile. There may be additional attesting entities and relying parties at the discretion of the identity provider (see1059
below).1060

6.4.3.1. <samlp2:AuthnRequest> Usage1061

Except as described below, a requester MAY include any message content described in [SAMLCore2], Section 3.4.1.1062
All processing rules are as defined in [SAMLCore2].1063

The <saml2: Issuer> element MUST NOT be present. This avoids duplication or conflict with the mandatory in-1064
formation already available from the ID-WSF SOAP Binding.1065

If the IdP cannot or will not satisfy the request, it MUST respond with a <samlp2: Response> message containing1066
an appropriate error status code or codes.1067

The ProtocolBinding attribute MUST be included and MUST be set to http: //www.w3.org/2005/08/1068
addressing/anonymous to indicate the response is to be returned directly to the requester. This value clearly dis-1069
tinguishes this profile's use of the protocol from that of the SAML 2.0 SSO profiles. The request MUST NOT contain1070
the AssertionConsumerServiceURL or AssertionConsumerServiceIndex attributes.1071

If no <saml2: Subject> element is included, the invocation identity associated with the request is implied to be the1072
requested subject. The requester MAY explicitly include a <saml2: Subject> element in the request that names the1073
actual Principal about which it wishes to receive an assertion. If the IdP does not recognize the requester as that Principal1074
(or an entity allowed to attest to it), then it MUST respond with a <samlp2: Response> message containing an error1075
status and no assertions.1076

In most cases, the identifier to return for the requested subject can be determined based on the identity of the relying1077
party or parties. If this is not sufficient (for example if the relying party is to be treated as a member of an affiliation1078
of providers), then the <samlp2: NameIDPolicy> element can be used to indicate this using the1079
SPNameQualifier attribute. (Note that this precludes the identification of multiple relying parties in a single request.)1080

If the requester wishes to permit the IdP to establish a new identifier for the Principal if none exists, it MUST include1081
a <samlp2: NameIDPolicy> element with the AllowCreate attribute set to "true". Otherwise, only a principal for1082
whom the IdP has previously established an identifier usable by the relying party or parties can be authenticated1083
successfully.1084

The requester MAY include one or more <saml2: SubjectConfirmation> elements in the request to specify at-1085
testation mechanisms to be attached to the resulting assertion(s). Usually this is done to translate ID-WSF security1086
mechanism requirements into the corresponding SAML confirmation methods that will be needed to satisfy the relying1087
party's security policy. Refer to [LibertySecMech] for a detailed mapping of security mechanisms to SAML confir-1088
mation methods.1089

The requester MAY include a <saml2: Conditions> element in the request. The IdP is NOT obligated to honor the1090
requested conditions, but SHOULD return an error if it cannot do so.1091

The requester MAY include an <saml2: AudienceRestriction> element in the request to enumerate one or more1092
relying parties by means of a <saml2: Audience> element containing a unique identifier for the relying party. The1093
IdP can utilize whatever knowledge is at its disposal to determine the appropriate content to place in the resulting1094
assertion(s), as well as how many assertions to issue, and whether the use of XML encryption is required.1095

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

32

The request MUST be signed or otherwise integrity protected by the binding or transport layer.1096

6.4.3.2. <samlp2: Response><samlp2: Response > Usage1097

If the IdP wishes to return an error, it MUST NOT include any assertions in the <samlp2: Response> message.1098
Otherwise the <samlp2: Response> element MUST conform to the following:1099

• The <saml2: Issuer> element MAY be omitted, but if present MUST contain the unique identifier of the issuing1100
IdP; the Format attribute MUST be omitted or have a value of urn: oasis: names: tc: SAML: 2.0: nameid-1101
format: entity1102

• It MUST contain at least one <saml2: Assertion>. Each assertion's <saml2: Issuer> element MUST contain1103
the unique identifier of the issuing IdP; the Format attribute MUST be omitted or have a value of urn: oasis:1104
names: tc: SAML: 2.0: nameid-format: entity1105

• Each assertion returned MUST be signed.1106

• The set of one or more assertions MUST contain at least one <saml2: AuthnStatement> that reflects the au-1107
thentication of the subject to the IdP.1108

• Confirmation methods and additional statements MAY be included in the assertion(s) at the discretion of the IdP.1109
In particular, <saml2: AttributeStatement> elements MAY be included.1110

• The assertions SHOULD contain an <saml2: AudienceRestriction> condition element containing the unique1111
identifier of the intended relying party or parties within the included <saml2: Audience> elements.1112

• Other conditions (and other <saml2: Audience> elements) MAY be included as requested or at the discretion of1113
the IdP. Of course, all such conditions MUST be understood and accepted by the relying party in order for the1114
assertion to be considered valid.1115

6.5. Use of Metadata1116

An IdP that offers an ID-WSF Single Sign-On Service supporting either of the profiles above SHOULD advertise1117
support for this capability in its metadata [SAMLMeta2]. To accomplish this, it MUST include a <md:1118
SingleSignOnService> element in its metadata with a Binding attribute of urn: liberty: sb: 2006-08.1119

The <md: IDPSSODescriptor> element's WantAuthnRequestsSigned attribute MAY be used by an IdP to docu-1120
ment a requirement that requests be signed (as opposed to protected only at the transport layer).1121

6.6. Inclusion of ID-WSF Endpoint References1122

Both SSOS profiles support the inclusion of arbitrary content in the assertions returned. Specifically, the SSOS MAY1123
include ID-WSF EPRs, encoded as SAML attributes, for the associated Principal's Discovery Service or other ID-WSF-1124
based services. These EPRs MAY contain additional security tokens or MAY refer to the containing assertion if1125
appropriate.1126

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

33

7. Identity Mapping Service1127

The ID-WSF Identity Mapping Service enables a requester to obtain one or more "identity tokens." As defined in1128
[LibertySecMech], identity tokens can be used to refer to principals in a privacy-preserving manner. The Identity1129
Mapping Service is an ID-WSF web service that translates references to a principal into alternative formats or identifier1130
namespaces. It is a generalization of the Name Identifier Mapping protocol defined in [SAMLCore2].1131

This section first outlines the service's conceptual model and then defines the protocol and message elements.1132

7.1. Conceptual Model1133

The ID-WSF Identity Mapping Service allows a requester in possession of one or more identity tokens to translate,1134
update, or refresh them using the protocol defined here. An example employer of this service is the ID-WSF People1135
Service [LibertyPeopleService]. A principal may also act on behalf of itself (or in conjunction with a WSC) to obtain1136
an identity token representing that principal for use in subsequent web service invocations.1137

An identity token can take a variety of forms, including many SAML-based representations such as SAML assertions1138
or SAML identifier fragments (encrypted or plaintext) such as may appear in the subject of SAML assertions (e.g.,1139
elements such as <saml2: NameID> or <saml2: EncryptedID>). A security token, such as a SAML authentication1140
assertion can also serve as an identity token. Note that when evaluating the validity of an identity token in SAML1141
assertion form, constraints may be imposed on its use by the issuer of the assertion.1142

SAML assertions used as identity tokens can also be used to communicate ID-WSF EPR and credential information,1143
such as for the associated Principal's Discovery Service or other ID-WSF-based services.1144

Conceptually, the mapping protocol is a translation or exchange of one or more inputs for corresponding outputs. Each1145
input consists of an identity token and a policy specifying the identity token to return. The security token of the invoking1146
identity can also be referenced as the input token. The output is the requested identity token, the exact form of which1147
may be up to the mapping service to establish.1148

7.2. Schema Declarations1149

The XML schema [Schema1-2] normatively defined in this section is constituted in the XML Schema file: liberty-1150
idwsf-idmapping-svc-v2.0.xsd, entitled " Liberty ID-WSF Identity Mapping Service XSD v2.0 " (see Appen-1151
dix D).1152

Additionally, Liberty ID-WSF Identity Mapping Service XSD v2.0 imports items from liberty-idwsf-utility-1153
v2.0.xsd (see Appendix E: Liberty ID-WSF Utility XSD v2.0), and also from liberty-idwsf-security-1154
mechanisms-v2.0.xsd (see [LibertySecMech]).1155

7.3. SOAP Binding1156

The Identity Mapping Service is an ID-WSF service; as such, the messages defined in Section 7.4 constitute ordinary1157
ID-* messages as defined in [LibertySOAPBinding]. They are intended to be bound to the [SOAPv1.1] protocol by1158
mapping them directly into the <s: Body> element of the <s: Envelope> element comprising a SOAP message.1159

[LibertySOAPBinding] normatively specifies this binding, as well as various required and optional SOAP header blocks1160
usable with this protocol.1161

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

34

7.3.1. Identity Mapping Service URIs1162

Table 4. Identity Mapping Service URIs1163

Use URI

Service Type urn: liberty: ims: 2006-08

IdentityMappingRequest wsa: Action urn: liberty: ims: 2006-08: IdentityMappingRequest

IdentityMappingResponse wsa: Action urn: liberty: ims: 2006-08: IdentityMappingResponse

7.4. Protocol Messages and Usage1164

The following request and response messages make up the Identity Mapping Service protocol:1165

7.4.1. Element <IdentityMappingRequest>1166

The <IdentityMappingRequest> element is of complex type IdentityMappingRequestType, and is defined in1167
Figure 4 and in Liberty ID-WSF Identity Mapping Service XSD v2.0 . This type contains the following attributes and1168
elements:1169

• Any Attributes [Optional]1170

Zero or more extension attributes qualified by an XML namespace other than the Identity Mapping Service name-1171
space.1172

• <MappingInput> [One or More]1173

One or more elements specifying the principals to return identity tokens for, and the policies describing the contents1174
of those tokens.1175

1176
 <xs: element name="IdentityMappingRequest" type="IdentityMappingRequestType"/>1177
 <xs: complexType name="IdentityMappingRequestType">1178
 <xs: sequence>1179
 <xs: element ref="MappingInput" maxOccurs="unbounded"/>1180
 </xs: sequence>1181
 <xs: anyAttribute namespace="##other" processContents="lax"/>1182
 </xs: complexType> 1183

Figure 4. Element <IdentityMappingRequest> Schema Fragment1184

7.4.1.1. Element <MappingInput>1185

The <MappingInput> element is of complex type MappingInputType, and is defined in Figure 5 and in Liberty1186
ID-WSF Identity Mapping Service XSD v2.0 . This type contains the following attributes and elements:1187

• reqID [Optional]1188

Uniquely identifies a <MappingInput> element within a request. Used by the responder to correlate the1189
<MappingOutput> elements that it returns to their corresponding inputs.1190

• <sec: TokenPolicy> [Optional]1191

A container for information specifying the characteristics of the identity token the requester wants returned to it.1192

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

35

• <sec: Token> [Required]1193

A container for the identity token (or token reference) that specifies the principal for whom to return a new identity1194
token.1195

Note1196

Notwithstanding the schema definition below that declares the <sec: Token> element to be optional, a1197
<sec: Token> element MUST be present in the <MappingInput> element. The looser schema definition1198
is designed to enable extension of the type by other specifications for which a mandatory <sec:1199
Token> element may not be appropriate.1200

1201
 <xs: element name="MappingInput" type="MappingInputType"/>1202
 <xs: complexType name="MappingInputType">1203
 <xs: sequence>1204
 <xs: element ref="sec: TokenPolicy" minOccurs="0"/>1205
 <xs: element ref="sec: Token" minOccurs="0"/>1206
 </xs: sequence>1207
 <xs: attribute name="reqID" type="lu: IDType" use="optional"/>1208
 </xs: complexType> 1209

Figure 5. Element <MappingInput> Schema Fragment1210

7.4.1.2. Request Usage1211

An <IdentityMappingRequest> consists of one or more <MappingInput> elements. If multiple1212
<MappingInput> elements are included in a request, then each element MUST contain a reqID attribute so that the1213
response contents can be correlated to them.1214

Each input consists of an identity (in the form of a <sec: Token>) and an optional <sec: TokenPolicy>.1215

The input identity token describes the principal for whom the requester desires a new identity token. This MAY be a1216
reference to a token elsewhere in the message or in some other location.1217

The input token policy describes the nature of the identity token to be returned, generally focusing on the nature of the1218
identifier. Often a principal will possess many alternate identifiers of different formats or scoped to different usage1219
contexts, such as a particular SP or affiliation. The policy allows the requester to translate from the input token to some1220
other form.1221

If no token policy is supplied, then the resulting output token SHOULD have the same general characteristics as the1222
input token, save perhaps for associated information such as its lifetime. This might be used to renew a token, for1223
example.1224

As identity tokens come in a variety of forms, so too the form of the input policy can vary. In the specific case of a1225
SAML-based identity token, a <samlp2: NameIDPolicy> SHOULD be used, as defined in [SAMLCore2].1226

The token policy SHOULD identify the entity for whom the identity token is being created, if other than the requester.1227
If this cannot be otherwise inferred from the policy, the issueTo attribute SHOULD be used to identify this entity.1228
When the <samlp2: NameIDPolicy> is used, the SPNameQualifier attribute will often supply this information, at1229
least for persistent identifiers in typical use cases, making use of the issueTo attribute redundant.1230

7.4.2. Element <IdentityMappingResponse>1231

The <IdentityMappingResponse> element is of complex type IdentityMappingResponseType, and is defined in1232
Figure 6 and in Liberty ID-WSF Identity Mapping Service XSD v2.0 . This type contains the following attributes and1233
elements:1234

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

36

• Any Attributes [Optional]1235

Zero or more extension attributes qualified by an XML namespace other than the Identity Mapping Service name-1236
space.1237

• <lu: Status> [Required]1238

The status of the request. This element is defined in Liberty ID-WSF Utility XSD v2.0 .1239

• <MappingOutput> [Zero or More]1240

Zero or more elements containing the identity tokens returned.1241

1242
 <xs: element name="IdentityMappingResponse" type="IdentityMappingResponseType"/>1243
 <xs: complexType name="IdentityMappingResponseType">1244
 <xs: sequence>1245
 <xs: element ref="lu: Status"/>1246
 <xs: element ref="MappingOutput" minOccurs="0" maxOccurs="unbounded"/>1247
 </xs: sequence>1248
 <xs: anyAttribute namespace="##other" processContents="lax"/>1249
 </xs: complexType> 1250

Figure 6. Element <IdentityMappingResponse> Schema Fragment1251

7.4.2.1. Element <MappingOutput>1252

The <MappingOutput> element is of complex type MappingOutputType, and is defined in Figure 7 and in Liberty1253
ID-WSF Identity Mapping Service XSD v2.0 . This type contains the following attributes and elements:1254

• reqRef [Optional]1255

Uniquely identifies a <MappingInput> element within the corresponding request. Used to correlate1256
<MappingOutput> elements to their corresponding inputs.1257

• <sec: Token> [Required]1258

A container for the identity token (or token reference) returned by the responder.1259

1260
 <xs: element name="MappingOutput" type="MappingOutputType"/>1261
 <xs: complexType name="MappingOutputType">1262
 <xs: sequence>1263
 <xs: element ref="sec: Token"/>1264
 </xs: sequence>1265
 <xs: attribute name="reqRef" type="lu: IDReferenceType" use="optional"/>1266
 </xs: complexType> 1267

Figure 7. Element <MappingOutput> Schema Fragment1268

7.4.2.2. Response Usage1269

An <IdentityMappingResponse> consists of a status element and zero or more <MappingOutput> elements, one1270
for each successfully processed token request. Unsuccessfully processed <MappingInput> elements do not result in a1271
corresponding <MappingOutput> element. elements. If multiple <MappingInput> elements were included in a re-1272
quest, then each output element MUST contain a reqRef attribute matching it to the corresponding input element.1273

Each output element consists of an identity token (in the form of a <sec: Token>).1274

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

37

Any tokens returned MUST be constructed in accordance with the policy supplied in the input. A specific exception1275
to this requirement is that any validUntil attribute specified by the requester MAY be ignored. If no policy was1276
specified, the identity token to return is presumed to be of the same nature as the identity token used as input.1277

The responder MUST take appropriate steps to ensure the privacy of the principal by encrypting the resulting identity1278
information such that only the principal and parties known to be privy to the information can read it.1279

If each input element is satisfied in the resulting response, then the responder MUST return a top-level <lu:1280
Status> code of "OK."1281

If at least one, but not all, of the resulting inputs cannot be satisfied, then the responder MUST return a top-level1282
<lu: Status> code of "Partial." It MAY return nested <lu: Status> elements reflecting the specific result of the1283
failed inputs.1284

If none of the resulting inputs can be satisfied, then the responder MUST return a top-level <lu: Status> code of1285
"Failed." It MAY return nested <lu: Status> elements reflecting the specific result of the failed inputs.1286

When multiple inputs are present, any nested <lu: Status> elements MUST contain a ref attribute equal to the1287
associated <MappingInput>'s reqID attribute.1288

7.4.2.3. Second-Level Status Codes1289

The following second-level codes are defined to represent common error conditions that may arise. Others may be1290
defined by implementations as required.1291

• "UnknownPrincipal" — the input token did not match a principal known to the service1292

• "BadInput" — the input token or policy was malformed or not understood1293

• "Denied" — the requested token translation was a violation of user or system policy1294

7.5. SAML Identity Tokens1295

As described in [LibertySecMech], identity tokens can be expressed in many ways. Even in the specific case of SAML,1296
many different formulations are possible, depending on the requirements. This section outlines a few common ways1297
of expressing identification using SAML with different security and privacy characteristics. The identity mapping1298
service is responsible for selecting an appropriate choice based on the requester, input policy, and the expected purpose.1299
It is outside the scope of this specification how such purposes are to be understood.1300

7.5.1. Assertions1301

SAML assertions can be used as identity tokens that reference the subject of the assertion. Such assertions are generally1302
signed for integrity, and often contain no statements, only a <saml2: Subject> element, possibly with conditions1303
that limit its use.1304

When privacy is required, a <saml2: EncryptedID> element SHOULD be used in the subject. The decrypted element1305
SHOULD NOT itself be an assertion (as it would be redundant).1306

If it is unnecessary to reveal the content of the enclosing assertion to the requester, then a <saml2:1307
EncryptedAssertion> element SHOULD be used, as it is simpler for the requester to handle. Alternatively, a1308
<saml2: EncryptedID> element could be returned directly (see the following section).1309

SAML assertions used as identity tokens MAY contain ID-WSF EPR attributes and credentials, such as for the asso-1310
ciated Principal's Discovery Service or other ID-WSF-based services.1311

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

38

7.5.2. Identifiers1312

SAML identifier elements (<saml2: BaseID>, <saml2: NameID>, or <saml2: EncryptedID>) can also be used as1313
identity tokens. Encrypted identifiers, in particular, can contain actual signed assertions, making them potential carriers1314
of the assertion forms described in the previous section.1315

However, in cases where privacy is not a consideration and limits on the use of the identifier are not relevant, a plaintext1316
form may also be useful, particularly as an input token to a mapping request. For example, an SP that shares an identifier1317
for a principal with an IdP offering an Identity Mapping service might use a <saml2: NameID> by itself as an input1318
token.1319

7.6. Security and Privacy Considerations1320

Privacy is a critical consideration in the operation of the Identity Mapping Service, because its primary purpose is to1321
enable entities to invoke services on behalf of principals without requiring the use of globally unique identifiers. Because1322
identifiers in ID-WSF are typically scoped to particular providers, care must be exercised when allowing providers to1323
map between them.1324

In particular, it is usually the case that the identifiers returned by the IMS SHOULD be encrypted when returned to1325
parties other than those with prior knowledge of them. The use of XML encryption generally results in unique ciphertext1326
each time a particular value is encrypted, preventing correlation by parties without access to the underlying plaintext.1327

It is also important for the IMS to take into consideration the relationship between the input and output tokens. Under1328
most circumstances, it should not be possible for a requester to map to its own namespace from another, as this would1329
permit the requester to correlate the original identifier to one that it knows. Rather, the IMS is more generally used to1330
map from a known identifier into another entity's namespace, returning the result in an encrypted form so that it can1331
be decrypted by that entity.1332

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

39

7.7. Example Identity Mapping Exchange1333

The following example shows a request for a SAML identity token. The policy and input token indicate a request to1334
map from an identifier scoped to one SP into an identifier scoped to another. In this case, the input token is a bare1335
identifier (probably extracted from another SAML token).1336

 1337
<sa: IdentityMappingRequest>1338
 <sa: MappingInput>1339
 <sec: TokenPolicy type="urn: liberty: security: 2006-08: IdentityTokenType: SAML20Assertion"><sec: TokenPolicy>1340
 <samlp2: NameIDPolicy Format="urn: oasis: names: tc: SAML: 2.0: nameid-format: persistent"1341
 SPNameQualifier="https: //spb.example.com"/>1342
 </sec: TokenPolicy>1343
 <sec: Token>1344
 <saml2: NameID Format="urn: oasis: names: tc: SAML: 2.0: nameid-format: persistent"1345
 NameQualifier="https: //idp.example.com" SPNameQualifier="https: //spa.example.com">1346
 DBC63923-C718-4249-83CE-1E53D80D8A4A1347
 </saml2: NameID>1348
 </sec: Token>1349
 </sa: MappingInput>1350
</sa: IdentityMappingRequest> 1351

The following is a possible response to the request above. The returned token is a signed SAML assertion with within1352
an encrypted name identifier. The requester can establish the expiration from the response, giving it guidance as to1353
when the token might need renewal.1354

 1355
<sa: IdentityMappingResponse>1356
 <sa: Status code="OK"/>1357
 <sa: MappingOutput>1358
 <sec: Token>1359
 <saml2: Assertion Version="2.0" IssueInstant="2006-03-19T07: 35: 00Z" 1360
 ID="e9ab6ff0-4ee0-4ce2-868f-18873bdc87de">1361
 <saml2: Issuer>https: //idp.example.com</saml2: Issuer>1362
 <ds: Signature>...</ds: Signature><saml2: EncryptedID>1363
 <saml2: Subject>1364
 <saml2: EncryptedID>1365
 <xenc: EncryptedData>U2XTCNvRX7Bl1NK182nmY00TEk==</xenc: EncryptedData>1366
 </saml2: EncryptedID>1367
 </saml2: Subject>1368
 <saml2: Conditions<xenc: EncryptedKey NotOnOrAfter="2006-03-19T08: 35: 00Z">1369
 <saml2: AudienceRestriction>1370
 <saml2: Audience>https: //spb.example.com</saml2: Audience>1371
 </saml2: AudienceRestriction>1372
 </saml2: Conditions>Recipient="https: //spb.example.com">...</xenc: EncryptedKey>1373
 </saml2: Assertion>1374
 </sec: Token>1375
 </sa: MappingOutput>1376
</sa: IdentityMappingResponse> 1377

Example 11. 1378

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

40

8. Password Transformations: The PasswordTransforms Element1379

This section defines the <PasswordTransforms> element. Authentication servers MAY use this element to convey1380
password pre-processing obligations to clients.1381

For example, an authentication server may have been configured such that it presumes that the strings users enter as1382
their passwords have been pre-processed in some fashion before being further processed and/or stored. For example1383
the passwords may be truncated to a given length, and all upper case characters may be folded to lower case, and1384
whitespace may be eliminated. The authentication server can communicate these requirements dynamically to clients1385
using the <PasswordTransforms> element in an initial <SASLResponse>. See Figure 8.1386

1387
 <xs: element name="PasswordTransforms">1388

1389
 <xs: annotation>1390
 <xs: documentation>1391
 Contains ordered list of sequential password transformations1392
 </xs: documentation>1393
 </xs: annotation>1394

1395
 <xs: complexType>1396
 <xs: sequence>1397

1398
 <xs: element name="Transform" maxOccurs="unbounded">1399
 <xs: complexType>1400
 <xs: sequence>1401

1402
 <xs: element name="Parameter" 1403
 minOccurs="0" 1404
 maxOccurs="unbounded">1405
 <xs: complexType>1406
 <xs: simpleContent>1407
 <xs: extension base="xs: string">1408
 <xs: attribute name="name" 1409
 type="xs: string" 1410
 use="required"/>1411
 </xs: extension>1412
 </xs: simpleContent>1413
 </xs: complexType>1414
 </xs: element>1415

1416
 </xs: sequence>1417

1418
 <xs: attribute name="name" 1419
 type="xs: anyURI" 1420
 use="required"/>1421

1422
 <xs: anyAttribute namespace="##other" processContents="lax"/>1423

1424
 </xs: complexType>1425
 </xs: element>1426
 </xs: sequence>1427
 </xs: complexType>1428
 </xs: element>1429
 1430

Figure 8. The PasswordTransforms element1431

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

41

1432
<PasswordTransforms>1433
 <Transform name="urn: liberty: sa: pm: truncate">1434
 <Parameter name="length">8</Parameter>1435
 </Transform>1436
 <Transform name="urn: liberty: sa: pm: lowercase" />1437
</PasswordTransforms>1438
 1439

Figure 9. Example of a PasswordTransforms1440

Servers MAY include a <PasswordTransforms> element along with their initial <SASLResponse> to a client. A1441
<PasswordTransforms> element contains one or more <Transform> elements. Each <Transform> is identified1442
by the value of the name attribute which must be a URI [RFC3986]. This URI MUST specify a particular transformation1443
on the password. Transforms are specified elsewhere, for example in configuration data at implementation- and/or1444
deployment-time. A basic set is specified in Appendix B: Password Transformations.1445

A client receiving an initial <SASLResponse> message containing a <PasswordTransforms> element MUST apply1446
the specified transformations to any password that is used as input for the SASL mechanism indicated in the1447
<SASLResponse>.1448

The client MUST apply the transformations in the order given in the <PasswordTransforms> element, and MUST1449
apply each transform to the result of the preceding transform. Of course, the first transform MUST be applied to the1450
raw password.1451

Unless the specification of a <Transform> states otherwise, it is specified in terms of [Unicode] abstract charac-1452
ters. An abstract character is a character as rendered to a user. Since an abstract character may require more than one1453
octet to represent, there is not necessarily a one-to-one mapping between an abstract character, or sequence of abstract1454
characters, and its corresponding coded character representation.1455

For example, if a truncation transform indicates, "truncate after the first eight characters," the characters after the eighth1456
abstract character should be removed; in some languages and character encodings this could mean that more than 81457
octets remain.1458

See also Appendix B.1459

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

42

9. Acknowledgments1460

This spec leverages techniques and ideas from draft-nystrom-http-sasl-xx (an IETF Internet-Draft), RFC3080,1461
RFC2251, RFC2829, RFC2830, et al (all are various IETF Requests For Comments). The authors of those specs are1462
gratefully acknowledged. Thanks also to Alexy Melnikov, Paul Madsen, and RL "Bob" Morgan for their feedback and1463
insights. The docbook source code for this specification was hand set to the tunes of Brad, Bob Mould, Weather Report,1464
Miles Davis, John Coltrane, Liz Phair, The Wallflowers, Alan Holdsworth, Chick Corea, Jennifer Trynin, Elisa Ko-1465
renne, The Cowboy Junkies, Fugazi, Blues Traveler, Blink-182, CSN, Pearl Jam, and various others. Thanks also to1466
whatever deities are responsible for the existence of coffee, dark chocolate, and fermented cereals.1467

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

43

References1468

Normative1469

[LibertyAuthnContext] Madsen, Paul, eds. "Liberty ID-FF Authentication Context Specification," Version 2.0-01,1470
Liberty Alliance Project (21 November 2004). http: //www.projectliberty.org/specs1471

[LibertyClientProfiles] Aarts, Robert, Kainulainen, Jukka, Kemp, John, eds. "Liberty ID-WSF Profiles for Liberty-1472
Enabled User Agents and Devices," Version 2.0-errata-v1.0, Liberty Alliance Project (22 January, 2007).1473
http://www.projectliberty.org/specs1474

[LibertyDisco] Cahill, Conor, Hodges, Jeff, eds. "Liberty ID-WSF Discovery Service Specification," Version 2.0-1475
errata-v1.0, Liberty Alliance Project (29 November, 2006). http://www.projectliberty.org/specs1476

[LibertyInteract] Aarts, Robert, Madsen, Paul, eds. "Liberty ID-WSF Interaction Service Specification," Version 2.0-1477
errata-v1.0, Liberty Alliance Project (21 April, 2007). http://www.projectliberty.org/specs1478

[LibertyPAOS] Aarts, Robert, Kemp, John, eds. "Liberty Reverse HTTP Binding for SOAP Specification," Version1479
2.0, Liberty Alliance Project (30 July, 2006). http: //www.projectliberty.org/specs1480

[LibertyPeopleService] Koga, Yuzo, Madsen, Paul, eds. "Liberty ID-WSF People Service Specification," Version 1.0-1481
errata-v1.0, Liberty Alliance Project (06 March, 2007). http://www.projectliberty.org/specs1482

[LibertyProtSchema] Cantor, Scott, Kemp, John, eds. "Liberty ID-FF Protocols and Schema Specification," Version1483
1.2-errata-v3.0, Liberty Alliance Project (14 December 2004). http: //www.projectliberty.org/specs1484

[LibertySecMech] Hirsch, Frederick, eds. "Liberty ID-WSF Security Mechanisms Core," Version 2.0-errata-v1.0,1485
Liberty Alliance Project (21 April, 2007). http://www.projectliberty.org/specs1486

[LibertyGlossary] Hodges, Jeff, eds. "Liberty Technical Glossary," Version v2.0, Liberty Alliance Project (30 July,1487
2006). http: //www.projectliberty.org/specs1488

[LibertySOAPBinding] Hodges, Jeff, Kemp, John, Aarts, Robert, Whitehead, Greg, Madsen, Paul, eds. "Liberty ID-1489
WSF SOAP Binding Specification," Version 2.0-errata-v1.0, Liberty Alliance Project (21 April, 2007). http://1490
www.projectliberty.org/specs1491

[LibertyIDWSFv20Errata] Champagne, Darryl, Lockhart, Rob, Tiffany, Eric, eds. "Liberty ID-WSF 2.0 Errata," Ver-1492
sion 1.0, Liberty Alliance Project (13 April, 2007). http://www.projectliberty.org/specs1493

[RFC2119] S. Bradner "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, The Internet Engi-1494
neering Task Force (March 1997). http://www.ietf.org/rfc/rfc2119.txt1495

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., eds. (June 1999).1496
"Hypertext Transfer Protocol -- HTTP/1.1," RFC 2616, The Internet Engineering Task Force http://1497
www.ietf.org/rfc/rfc2616.txt1498

[RFC3066] Alvestrand, H., eds. (January 2001). "Tags for the Identification of Languages," RFC 3066., Internet En-1499
gineering Task Force http://www.ietf.org/rfc/rfc3066.txt1500

[RFC3986] Berners-Lee, T., Fielding, R., Masinter, L., eds. (January 2005). "Uniform Resource Identifier (URI):1501
Generic Syntax," RFC 3986 (Obsoletes RFC2732, RFC2396, RFC1808) (Updates RFC1738) (Also STD0066)1502
(Status: STANDARD), The Internet Engineering Task Force http://www.ietf.org/rfc/rfc3986.txt1503

[RFC4346] Dierks, T., Rescorla, E., eds. (April 2006). "The Transport Layer Security (TLS) Protocol," Version 1.11504
RFC 4346, Internet Engineering Task Force http://www.ietf.org/rfc/rfc4346.txt1505

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

44

http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4346.txt

[RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., Wright, T., eds. (April 2006). "Transport1506
Layer Security (TLS) Extensions," RFC 4366, The Internet Engineering Task Force http://www.ietf.org/rfc/1507
rfc4366.txt1508

[RFC4422] "Simple Authentication and Security Layer (SASL)," Melnikov, A., Zeilenga, K., eds. (June 2006). RFC1509
4422, Internet Engineering Task Force http://www.ietf.org/rfc/rfc4422.txt1510

[SAMLCore11] Maler, Eve, Mishra, Prateek, Philpott, Rob, eds. (2 September 2003). "Assertions and Protocol for the1511
OASIS Security Assertion Markup Language (SAML) V1.1," SAML v1.1, OASIS Standard, Organization1512
for the Advancement of Structured Information Standards http://www.oasis-open.org/committees/down-1513
load.php/3406/oasis-sstc-saml-core-1.1.pdf1514

[SAMLCore2] Cantor, Scott, Kemp, John, Philpott, Rob, Maler, Eve, eds. (15 March 2005). "Assertions and Protocol1515
for the OASIS Security Assertion Markup Language (SAML) V2.0," SAML V2.0, OASIS Standard, Organ-1516
ization for the Advancement of Structured Information Standards http://docs.oasis-open.org/security/saml/1517
v2.0/saml-core-2.0-os.pdf1518

[SAMLGloss2] Hodges, Jeff, Philpott, Rob, Maler, Eve, eds. (15 March 2005). "Glossary for the OASIS Security1519
Assertion Markup Language (SAML) V2.0," SAML 2.0, OASIS Standard, Organization for the Advancement1520
of Structured Information Standards http://docs.oasis-open.org/security/saml/v2.0/saml-glossary-2.0-os.pdf1521

[SAMLMeta2] Cantor, Scott, Moreh, Jahan, Philpott, Rob, Maler, Eve, eds. (15 March 2005). "Metadata for the OASIS1522
Security Assertion Markup Language (SAML) V2.0," SAML V2.0, OASIS Standard, Organization for the1523
Advancement of Structured Information Standards http://docs.oasis-open.org/security/saml/v2.0/saml-met-1524
adata-2.0-os.pdf1525

[SAMLProf2] Hughes, John, Cantor, Scott, Hodges, Jeff, Hirsch, Frederick, Mishra, Prateek, Philpott, Rob, Maler,1526
Eve, eds. (15 March, 2005). "Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0,"1527
SAML V2.0, OASIS Standard, Organization for the Advancement of Structured Information Standards http://1528
docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf1529

[SASLReg] "Simple Authentication and Security Layer (SASL) Mechanisms," Internet Assigned Numbers Authority1530
(IANA) http://www.iana.org/assignments/sasl-mechanisms1531

[Schema1-2] Thompson, Henry S., Beech, David, Maloney, Murray, Mendelsohn, Noah, eds. (28 October 2004).1532
"XML Schema Part 1: Structures Second Edition," Recommendation, World Wide Web Consortium http://1533
www.w3.org/TR/xmlschema-1/1534

[SOAPv1.1] "Simple Object Access Protocol (SOAP) 1.1," Box, Don, Ehnebuske, David , Kakivaya, Gopal, Layman,1535
Andrew, Mendelsohn, Noah, Nielsen, Henrik Frystyk, Winer, Dave, eds. World Wide Web Consortium W3C1536
Note (08 May 2000). http://www.w3.org/TR/2000/NOTE-SOAP-20000508/1537

[Unicode] The Unicode Consortium (2003). "The Unicode Standard, version 4.0," Addison-Wesley Unicode 4.0.01538
[http://www.unicode.org]1539

[WSAv1.0] "Web Services Addressing (WS-Addressing) 1.0," Gudgin, Martin, Hadley, Marc, Rogers, Tony, eds.1540
World Wide Web Consortium W3C Recommendation (9 May 2006). http://www.w3.org/TR/2006/REC-ws-1541
addr-core-20060509/1542

[WSAv1.0-SOAP] "WS-Addressing 1.0 SOAP Binding," Gudgin, Martin, Hadley, Marc, eds. World Wide Web Con-1543
sortium W3C Recommendation (9 May 2006). http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/1544

[WSDLv1.1] "Web Services Description Language (WSDL) 1.1," Christensen, Erik, Curbera, Francisco, Meredith,1545
Greg, Weerawarana, Sanjiva, eds. World Wide Web Consortium W3C Note (15 March 2001). http://1546
www.w3.org/TR/2001/NOTE-wsdl-200103151547

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

45

http://www.ietf.org/rfc/rfc4366.txt
http://www.ietf.org/rfc/rfc4366.txt
http://www.ietf.org/rfc/rfc4422.txt
http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-glossary-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://www.iana.org/assignments/sasl-mechanisms
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.unicode.org
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

Informational1548

[IANA] "The Internet Assigned Numbers Authority," http://www.iana.org/1549

[LibertyIDPP] Kellomäki, Sampo, Lockhart, Rob, eds. "Liberty ID-SIS Personal Profile Service Specification," Ver-1550
sion 1.1, Liberty Alliance Project (29 September, 2005). http://www.projectliberty.org/specs1551

[LibertyIDWSFOverview] Tourzan, Jonathan, Koga, Yuzo, eds. "Liberty ID-WSF Web Services Framework Over-1552
view," Version 2.0, Liberty Alliance Project (30 July, 2006). http: //www.projectliberty.org/specs1553

[Merriam-Webster] "Merriam-Webster Dictionary," http://www.merriam-webster.com/1554

[RFC2289] "A One-Time Password System," N. Haller C. Metz P. Nessner M. Straw (February 1998). RFC 2289,1555
Internet Engineering Task Force http://www.ietf.org/rfc/rfc2289.txt1556

[RFC2444] Newman, C., eds. (October 1998). "The One-Time-Password SASL Mechanism," RFC 2444, The Internet1557
Engineering Task Force http://www.ietf.org/rfc/rfc2444.txt1558

[RFC2828] Shirey, R., eds. (May 2000). "Internet Security Glossary," RFC 2828., Internet Engineering Task Force1559
http://www.ietf.org/rfc/rfc2828.txt1560

[RFC3163] Zuccherato, R., Nystrom, M., eds. (August 2001). "ISO/IEC 9798-3 Authentication SASL Mechanism,"1561
RFC 3163, Internet Engineering Task Force http://www.ietf.org/rfc/rfc3163.txt1562

[SAMLBind2] Cantor, Scott, Hirsch, Frederick, Kemp, John, Philpott, Rob, Maler, Eve, eds. (15 March 2005). "Bind-1563
ings for the OASIS Security Assertion Markup Language (SAML) V2.0," SAML V2.0, OASIS Standard,1564
Organization for the Advancement of Structured Information Standards http://docs.oasis-open.org/security/1565
saml/v2.0/saml-bindings-2.0-os.pdf1566

[SOAPv1.2] "SOAP Version 1.2 Part 1: Messaging Framework," Gudgin, Martin, Hadley, Marc, Mendelsohn, Noah,1567
Moreau, Jean-Jacques, Nielsen, Henrik Frystyk, eds. World Wide Web Consortium W3C Recommendation1568
(07 May 2003). http://www.w3.org/TR/2003/PR-soap12-part1-20030507/1569

[TrustInCyberspace] Schneider, Fred B., eds. "Trust in Cyberspace," National Research Council (1999). http://1570
www.nap.edu/readingroom/books/trust/1571

[WooLam92] Thomas Y. C. Woo Simon S. Lam "Authentication for Distributed Systems," (January, 1992). IEEE1572
Computer Society IEEE Computer (Vol. 25, No. 1), pp. 39-52 http://doi.ieeecomputersociety.org/1573
10.1109/2.1080521574

[wss-sms] Hallam-Baker, Phillip, Kaler, Chris, Monzillo, Ronald, Nadalin, Anthony, eds. (January, 2004). "Web1575
Services Security: SOAP Message Security," OASIS Standard V1.0 [OASIS 200401], Organization for the1576
Advancement of Structured Information Standards http://docs.oasis-open.org/wss/2004/01/oasis-200401-1577
wss-soap-message-security-1.0.pdf1578

[wss-saml11] Monzillo, Ronald, Kaler, Chris, Nadalin, Anthony, Hallam-Baker, Phillip, eds. (June 28, 2005). Organ-1579
ization for the Advancement of Structured Information Standards http://www.oasis-open.org/committees/1580
download.php/13405/wss-v1.1-spec-pr-SAMLTokenProfile-01.pdf "Web Services Security: SAML Token1581
Profile 1.1," OASIS Public Review Draft 01,1582

[XML] Bray, Tim, Paoli, Jean, Sperberg-McQueen, C. M., Maler, Eve, Yergeau, Francois, eds. (04 February 2004).1583
"Extensible Markup Language (XML) 1.0 (Third Edition)," Recommendation, World Wide Web Consorti-1584
um http://www.w3.org/TR/2004/REC-xml-200402041585

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

46

http://www.iana.org/
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.merriam-webster.com/
http://www.ietf.org/rfc/rfc2289.txt
http://www.ietf.org/rfc/rfc2444.txt
http://www.ietf.org/rfc/rfc2828.txt
http://www.ietf.org/rfc/rfc3163.txt
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://www.w3.org/TR/2003/PR-soap12-part1-20030507/
http://www.nap.edu/readingroom/books/trust/
http://www.nap.edu/readingroom/books/trust/
http://doi.ieeecomputersociety.org/10.1109/2.108052
http://doi.ieeecomputersociety.org/10.1109/2.108052
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/13405/wss-v1.1-spec-pr-SAMLTokenProfile-01.pdf
http://www.oasis-open.org/committees/download.php/13405/wss-v1.1-spec-pr-SAMLTokenProfile-01.pdf
http://www.w3.org/TR/2004/REC-xml-20040204

A. Listing of Simple Authentication and Security Layer (SASL) Mecha-1586

nisms1587

Ref: [SASLReg]1588

Note1589

The file listed below IS SUBJECT TO CHANGE! It is presented here as non-normative background infor-1590
mation only. Implementers and deployers should always retrieve a fresh copy of this file from [IANA].1591

 1592
SIMPLE AUTHENTICATION AND SECURITY LAYER (SASL) MECHANISMS1593
--1594

1595
(last updated 15 May 2006)1596

1597
The Simple Authentication and Security Layer (SASL) [RFC-ietf-sasl-rfc2222bis-15.txt] is a1598
method for adding authentication support to connection-based1599
protocols. To use this specification, a protocol includes a command1600
for identifying and authenticating a user to a server and for1601
optionally negotiating a security layer for subsequent protocol1602
interactions. The command has a required argument identifying a SASL1603
mechanism.1604

1605
SASL mechanisms are named by strings, from 1 to 20 characters in1606
length, consisting of upper-case letters, digits, hyphens, and/or1607
underscores. SASL mechanism names must be registered with the IANA.1608
Procedures for registering new SASL mechanisms are described in1609
RFC-ietf-sasl-rfc2222bis-15.txt.1610

1611
Registration Procedures: 1612
First Come First Serve for Mechanisms1613
Expert Review with Mailing List for Family Name Registrations1614

1615
MECHANISMS USAGE REFERENCE OWNER1616
---------- ----- --------- -----1617
KERBEROS_V4 OBSOLETE [RFC2222] IESG <iesg@ietf.org>1618

1619
GSSAPI COMMON [RFC2222] IESG <iesg@ietf.org> 1620

1621
SKEY OBSOLETE [RFC2444] IESG <iesg@ietf.org>1622

1623
EXTERNAL COMMON [RFC-ietf-sasl-rfc2222bis-15.txt] IESG <iesg@ietf.org>1624

1625
CRAM-MD5 LIMITED [RFC2195] IESG <iesg@ietf.org> 1626
 1627
ANONYMOUS COMMON [RFC-ietf-sasl-anon-05.txt] IESG <iesg@ietf.org>1628

1629
OTP COMMON [RFC2444] IESG <iesg@ietf.org>1630

1631
GSS-SPNEGO LIMITED [Leach] Paul Leach <paulle@microsoft.com>1632

1633
PLAIN COMMON [RFC2595] IESG <iesg@ietf.org>1634

1635
SECURID COMMON [RFC2808] Magnus Nystrom <magnus@rsasecurity.com>1636

1637
NTLM LIMITED [Leach] Paul Leach <paulle@microsoft.com>1638

1639
NMAS_LOGIN LIMITED [Gayman] Mark G. Gayman <mgayman@novell.com>1640

1641
NMAS_AUTHEN LIMITED [Gayman] Mark G. Gayman <mgayman@novell.com>1642

1643
DIGEST-MD5 COMMON [RFC2831] IESG <iesg@ietf.org>1644

1645
9798-U-RSA-SHA1-ENC COMMON [RFC3163] robert.zuccherato@entrust.com1646

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

47

1647
9798-M-RSA-SHA1-ENC COMMON [RFC3163] robert.zuccherato@entrust.com1648

1649
9798-U-DSA-SHA1 COMMON [RFC3163] robert.zuccherato@entrust.com1650

1651
9798-M-DSA-SHA1 COMMON [RFC3163] robert.zuccherato@entrust.com1652

1653
9798-U-ECDSA-SHA1 COMMON [RFC3163] robert.zuccherato@entrust.com1654

1655
9798-M-ECDSA-SHA1 COMMON [RFC3163] robert.zuccherato@entrust.com1656

1657
KERBEROS_V5 COMMON [Josefsson] Simon Josefsson <simon@josefsson.org>1658

1659
NMAS-SAMBA-AUTH LIMITED [Brimhall] Vince Brimhall <vbrimhall@novell.com>1660
 1661

1662
References1663
----------1664
[RFC2195] Klensin, J., Catoe, R., Krumviede, P. "IMAP/POP AUTHorize1665
 Extension for Simple Challenge/Response," RFC 2195, MCI,1666
 September 1997.1667

1668
[RFC2222] J. Myers, "Simple Authentication and Security Layer (SASL)," 1669
 RFC 2222, October 1997.1670

1671
[RFC2444] Newman, C., "The One-Time-Password SASL Mechanism," RFC1672
 2444, October 1998.1673

1674
[RFC2595] Newman, C., "Using TLS with IMAP, POP3 and ACAP," RFC 2595,1675
 Innosoft, June 1999.1676

1677
[RFC2808] Nystrom, M., "The SecurID(r) SASL Mechanism," RFC 2808,1678
 April 2000.1679

1680
[RFC2831] Leach, P. and C. Newman, "Using Digest Authentication as a1681
 SASL Mechanism," RFC 2831, May 2000.1682

1683
[RFC3163] R. Zuccherato and M. Nystrom, "ISO/IEC 9798-3 Authentication 1684
 SASL Mechanism," RFC 3163, August 2001.1685

1686
[RFC-ietf-sasl-anon-05.txt] 1687
 K. Zeilenga, Ed., "The Anonymous SASL Mechanism," RFC XXXX,1688
 Month Year.1689

1690
[RFC-ietf-sasl-rfc2222bis-15.txt] 1691
 A. Melnikov and K. Zeilenga, "Simple Authentication and Security 1692
 Layer (SASL)," RFC XXXX, Month Year.1693

1694
People1695
------1696

1697
[Brimhall] Vince Brimhall, <vbrimhall@novell.com>, April 2004.1698

1699
[Gayman] Mark G. Gayman, <mgayman@novell.com>, September 2000.1700

1701
[Josefsson] Simon Josefsson, <simon@josefsson.org>, January 2004.1702

1703
[Leach] Paul Leach, <paulle@microsoft.com>, December 1998, June 2000.1704

1705
[] 1706

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

48

B. Password Transformations1707

This section defines a number of password transformations.1708

1. Truncation1709

The urn: liberty: sa: pw: truncate transformation instructs processors to remove all (Unicode abstract) subse-1710
quent characters after a given number of characters have been obtained (from the user). Subsequent processing MUST1711
take only the given number of characters as input. The number of characters that shall remain is given in a1712
<Parameter> element with name "length".1713

1714
<Transform name="urn: liberty: sa: pw: truncate">1715
 <Parameter name="length">8</Parameter>1716
</Transform> 1717
 1718

Figure B.1. Example of truncation transformation1719

2. Lowercase1720

The urn: liberty: sa: pw: lowercase transformation instructs processors to replace all uppercase characters with1721
lowercase characters. Characters that do not have case must remain unchanged. This transformation has no parameters.1722
Note that the "case" of the abstract Unicode character is decisive, i.e., only characters that have the Uppercase property1723
should be replaced with equivalent characters with the Lowercase property. This mapping from UPPERCASE to1724
lowercase should confirm to the relevant sections (e.g., 4.2) of [Unicode].1725

1726
<Transform name="urn: liberty: sa: pw: lowercase" />1727
 1728

Figure B.2. Example of lowercase transformation1729

3. Uppercase1730

The urn: liberty: sa: pw: uppercase transformation instructs processors to replace all lowercase characters with1731
uppercase characters. Characters that do not have case must remain unchanged. This transformation has no parameters.1732
Note that the "case" of the abstract Unicode character is decisive, i.e., only characters that have the Lowercase property1733
should be replaced with equivalent characters with the Uppercase property. This mapping from lowercase to1734
UPPERCASE should confirm to the relevant sections (e.g., 4.2) of [Unicode].1735

1736
<Transform name="urn: liberty: sa: pw: uppercase" />1737
 1738

Figure B.3. Example of uppercase transformation1739

4. Select1740

The urn: liberty: sa: pw: select transformation instructs processors to remove all characters except those speci-1741
fied in the "allowed" parameter. Note that the allowed characters refer to abstract Unicode characters. In the message1742
that contains the <Transform> element these characters are encoded with the same encoding as used for the xml1743
document that contains the message (usually UTF-8).1744

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

49

1745
<Transform name="urn: liberty: sa: pw: select">1746
 <Parameter name="allowed">0123456789abcdefghijklmnopqrstyvwxyz</Parameter>1747
</Transform>1748
 1749

Figure B.4. Example of select transformation1750

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

50

C. liberty-idwsf-authn-svc-v2.0.xsd Schema Listing1751

<?xml version="1.0" encoding="UTF-8"?>1752
1753

<xs: schema 1754
 targetNamespace="urn: liberty: sa: 2006-08" 1755
 xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/" 1756
 xmlns: sa="urn: liberty: sa: 2006-08" 1757
 xmlns: xs="http: //www.w3.org/2001/XMLSchema" 1758
 xmlns: samlp2="urn: oasis: names: tc: SAML: 2.0: protocol"1759
 xmlns: wsa="http: //www.w3.org/2005/08/addressing" 1760
 xmlns: lu="urn: liberty: util: 2006-08"1761
 xmlns="urn: liberty: sa: 2006-08" 1762
 elementFormDefault="qualified" 1763
 attributeFormDefault="unqualified" 1764
 version="09"1765
 >1766

1767
<!-- Filename: lib-arch-authn-svc.xsd -->1768
<!-- $Id: lib-arch-authn-svc.xsd 3793 2006-07-28 02: 44: 20Z dchampagne $ -->1769
<!-- Author: Jeff Hodges -->1770
<!-- Last editor: $Author: dchampagne $ -->1771
<!-- $Date: 2006-07-27 22: 44: 20 -0400 (Thu, 27 Jul 2006) $ -->1772
<!-- $Revision: 3793 $ -->1773

1774
 <xs: import 1775
 namespace="http: //www.w3.org/2005/08/addressing" 1776
 schemaLocation="ws-addr-1.0.xsd"/>1777

1778
 <xs: import1779
 namespace="urn: oasis: names: tc: SAML: 2.0: protocol"1780
 schemaLocation="saml-schema-protocol-2.0.xsd"/>1781

1782
 <xs: import namespace="urn: liberty: util: 2006-08"1783
 schemaLocation="liberty-idwsf-utility-v2.0.xsd"/>1784

1785
 1786
 1787
 <xs: annotation>1788
 <xs: documentation>1789
 Liberty ID-WSF Authentication Service XSD1790
 </xs: documentation>1791
 <xs: documentation> 1792
 The source code in this XSD file was excerpted verbatim from: 1793
 1794
 Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification1795
 Version 2.01796
 30 July, 20061797
 1798
 Copyright (c) 2006 Liberty Alliance participants, 1799
 see http: //www.projectliberty.org/specs/idwsf_2_0_copyrights.php1800
 </xs: documentation>1801
 </xs: annotation>1802

1803
1804

 <!-- SASLRequest and SASLResponse ID-* messages --> 1805
1806

 <xs: element name="SASLRequest">1807
 <xs: complexType>1808
 <xs: sequence>1809

1810
 <xs: element name="Data" minOccurs="0">1811
 <xs: complexType>1812
 <xs: simpleContent>1813
 <xs: extension base="xs: base64Binary"/>1814
 </xs: simpleContent>1815
 </xs: complexType>1816

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

51

 </xs: element>1817
1818

 <xs: element ref="samlp2: RequestedAuthnContext" minOccurs="0"/> 1819
 1820
 <xs: element name="Extensions" minOccurs="0">1821
 <xs: complexType>1822
 <xs: sequence>1823
 <xs: any namespace="##other" processContents="lax" maxOccurs="unbounded"/>1824
 </xs: sequence>1825
 </xs: complexType>1826
 </xs: element>1827
 1828
 </xs: sequence>1829

1830
 <xs: attribute name="mechanism" 1831
 type="xs: string" 1832
 use="required"/>1833

1834
 <xs: attribute name="authzID" 1835
 type="xs: string" 1836
 use="optional"/>1837

1838
 <xs: attribute name="advisoryAuthnID" 1839
 type="xs: string" 1840
 use="optional"/>1841

1842
 <xs: anyAttribute namespace="##other" processContents="lax"/>1843

1844
 </xs: complexType>1845
 </xs: element>1846

1847
 <xs: element name="SASLResponse">1848
 <xs: complexType>1849
 <xs: sequence>1850

1851
 <xs: element ref="lu: Status"/>1852

1853
 <xs: element ref="PasswordTransforms" minOccurs="0"/>1854

1855
 <xs: element name="Data" minOccurs="0">1856
 <xs: complexType>1857
 <xs: simpleContent>1858
 <xs: extension base="xs: base64Binary"/>1859
 </xs: simpleContent>1860
 </xs: complexType>1861
 </xs: element>1862

1863
 <!-- ID-WSF EPRs --> 1864
 <xs: element ref="wsa: EndpointReference" 1865
 minOccurs="0" 1866
 maxOccurs="unbounded"/>1867

1868
 </xs: sequence> 1869

1870
 <xs: attribute name="serverMechanism" 1871
 type="xs: string" 1872
 use="optional"/>1873

1874
 <xs: anyAttribute namespace="##other" processContents="lax"/>1875
 1876
 </xs: complexType>1877
 </xs: element>1878

1879
1880

 <!-- Password Transformations -->1881
1882

 <xs: element name="PasswordTransforms">1883

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

52

1884
 <xs: annotation>1885
 <xs: documentation>1886
 Contains ordered list of sequential password transformations1887
 </xs: documentation>1888
 </xs: annotation>1889

1890
 <xs: complexType>1891
 <xs: sequence>1892

1893
 <xs: element name="Transform" maxOccurs="unbounded">1894
 <xs: complexType>1895
 <xs: sequence>1896

1897
 <xs: element name="Parameter" 1898
 minOccurs="0" 1899
 maxOccurs="unbounded">1900
 <xs: complexType>1901
 <xs: simpleContent>1902
 <xs: extension base="xs: string">1903
 <xs: attribute name="name" 1904
 type="xs: string" 1905
 use="required"/>1906
 </xs: extension>1907
 </xs: simpleContent>1908
 </xs: complexType>1909
 </xs: element>1910

1911
 </xs: sequence>1912

1913
 <xs: attribute name="name" 1914
 type="xs: anyURI" 1915
 use="required"/>1916

1917
 <xs: anyAttribute namespace="##other" processContents="lax"/>1918
 1919
 </xs: complexType>1920
 </xs: element>1921
 </xs: sequence>1922
 </xs: complexType>1923
 </xs: element>1924

1925
</xs: schema>1926

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

53

D. liberty-idwsf-idmapping-svc-v2.0.xsd Schema Listing1927

<?xml version="1.0" encoding="UTF-8"?>1928
1929

<xs: schema 1930
 targetNamespace="urn: liberty: ims: 2006-08" 1931
 xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/" 1932
 xmlns: ims="urn: liberty: ims: 2006-08" 1933
 xmlns: sec="urn: liberty: security: 2006-08"1934
 xmlns: xs="http: //www.w3.org/2001/XMLSchema" 1935
 xmlns: lu="urn: liberty: util: 2006-08"1936
 xmlns="urn: liberty: ims: 2006-08" 1937
 elementFormDefault="qualified" 1938
 attributeFormDefault="unqualified"1939
 >1940

1941
<!-- Filename: liberty-idwsf-idmapping-svc-v2.0.xsd -->1942
<!-- $Id: lib-arch-idmapping-svc.xsd 3793 2006-07-28 02: 44: 20Z dchampagne $ -->1943
<!-- Author: Scott Cantor -->1944
<!-- Last editor: $Author: dchampagne $ -->1945
<!-- $Date: 2006-07-27 22: 44: 20 -0400 (Thu, 27 Jul 2006) $ -->1946
<!-- $Revision: 3793 $ -->1947

1948
 <xs: import1949
 namespace="urn: liberty: security: 2006-08"1950
 schemaLocation="liberty-idwsf-security-mechanisms-v2.0.xsd"/>1951
 1952
 <xs: import namespace="urn: liberty: util: 2006-08"1953
 schemaLocation="liberty-idwsf-utility-v2.0.xsd"/>1954

1955
 <xs: annotation>1956
 <xs: documentation>1957
 Liberty ID-WSF Identity Mapping Service XSD1958
 </xs: documentation>1959
 <xs: documentation> 1960
 The source code in this XSD file was excerpted verbatim from: 1961

1962
 Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification1963
 Version 2.01964
 30 July, 20061965

1966
 Copyright (c) 2006 Liberty Alliance participants, 1967
 see http: //www.projectliberty.org/specs/idwsf_2_0_copyrights.php1968
 </xs: documentation>1969
 </xs: annotation>1970

1971
 <xs: element name="MappingInput" type="MappingInputType"/>1972
 <xs: complexType name="MappingInputType">1973
 <xs: sequence>1974
 <xs: element ref="sec: TokenPolicy" minOccurs="0"/>1975
 <xs: element ref="sec: Token" minOccurs="0"/>1976
 </xs: sequence>1977
 <xs: attribute name="reqID" type="lu: IDType" use="optional"/>1978
 </xs: complexType>1979

1980
 <xs: element name="MappingOutput" type="MappingOutputType"/>1981
 <xs: complexType name="MappingOutputType">1982
 <xs: sequence>1983
 <xs: element ref="sec: Token"/>1984
 </xs: sequence>1985
 <xs: attribute name="reqRef" type="lu: IDReferenceType" use="optional"/>1986
 </xs: complexType>1987
 1988
 <xs: element name="IdentityMappingRequest" type="IdentityMappingRequestType"/>1989
 <xs: complexType name="IdentityMappingRequestType">1990
 <xs: sequence>1991
 <xs: element ref="MappingInput" maxOccurs="unbounded"/>1992

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

54

 </xs: sequence>1993
 <xs: anyAttribute namespace="##other" processContents="lax"/>1994
 </xs: complexType>1995
 1996
 <xs: element name="IdentityMappingResponse" type="IdentityMappingResponseType"/>1997
 <xs: complexType name="IdentityMappingResponseType">1998
 <xs: sequence>1999
 <xs: element ref="lu: Status"/>2000
 <xs: element ref="MappingOutput" minOccurs="0" maxOccurs="unbounded"/>2001
 </xs: sequence>2002
 <xs: anyAttribute namespace="##other" processContents="lax"/>2003
 </xs: complexType>2004
 2005
</xs: schema>2006

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

55

E. liberty-idwsf-utility-v2.0.xsd Schema Listing2007

<?xml version="1.0" encoding="UTF-8"?>2008
<xs: schema targetNamespace="urn: liberty: util: 2006-08"2009
 xmlns: xs="http: //www.w3.org/2001/XMLSchema"2010
 xmlns="urn: liberty: util: 2006-08"2011
 elementFormDefault="qualified"2012
 attributeFormDefault="unqualified"2013
 version="2.0-03">2014

2015
 <xs: annotation>2016
 <xs: documentation>2017
 Liberty Alliance Project utility schema. A collection of common2018
 IDentity Web Services Framework (ID-WSF) elements and types.2019
 This schema is intended for use in ID-WSF schemas.2020

2021
 This version: 2006-082022

2023
 Copyright (c) 2006 Liberty Alliance participants, see2024
 http: //www.projectliberty.org/specs/idwsf_2_0_final_copyrights.php2025
 </xs: documentation>2026
 </xs: annotation>2027
 <xs: simpleType name="IDType">2028
 <xs: annotation>2029
 <xs: documentation>2030
 This type should be used to provide IDs to components 2031
 that have IDs that may not be scoped within the local 2032
 xml instance document.2033
 </xs: documentation>2034
 </xs: annotation>2035
 <xs: restriction base="xs: string"/>2036
 </xs: simpleType>2037
 <xs: simpleType name="IDReferenceType">2038
 <xs: annotation>2039
 <xs: documentation> 2040
 This type can be used when referring to elements that are2041
 identified using an IDType.2042
 </xs: documentation>2043
 </xs: annotation>2044
 <xs: restriction base="xs: string"/>2045
 </xs: simpleType>2046
 <xs: attribute name="itemID" type="IDType"/>2047
 <xs: attribute name="itemIDRef" type="IDReferenceType"/>2048
 <xs: complexType name="StatusType">2049
 <xs: annotation>2050
 <xs: documentation> 2051
 A type that may be used for status codes. 2052
 </xs: documentation>2053
 </xs: annotation>2054
 <xs: sequence>2055
 <xs: element ref="Status" minOccurs="0" maxOccurs="unbounded"/>2056
 </xs: sequence>2057
 <xs: attribute name="code" type="xs: string" use="required"/>2058
 <xs: attribute name="ref" type="IDReferenceType" use="optional"/>2059
 <xs: attribute name="comment" type="xs: string" use="optional"/>2060
 </xs: complexType>2061

2062
 <xs: element name="Status" type="StatusType">2063
 <xs: annotation>2064
 <xs: documentation> 2065
 A standard Status type2066
 </xs: documentation>2067
 </xs: annotation>2068
 </xs: element>2069

2070
 <xs: complexType name="ResponseType">2071
 <xs: sequence>2072

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

56

 <xs: element ref="Status" minOccurs="1" maxOccurs="1"/>2073
 <xs: element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>2074
 </xs: sequence>2075
 <xs: attribute ref="itemIDRef" use="optional"/>2076
 <xs: anyAttribute namespace="##other" processContents="lax"/>2077
 </xs: complexType>2078
 <xs: element name="TestResult" type="TestResultType"/>2079
 <xs: complexType name="TestResultType">2080
 <xs: simpleContent>2081
 <xs: extension base="xs: boolean">2082
 <xs: attribute ref="itemIDRef" use="required"/>2083
 </xs: extension>2084
 </xs: simpleContent>2085
 </xs: complexType>2086
 <xs: complexType name="EmptyType">2087
 <xs: annotation>2088
 <xs: documentation> This type may be used to create an empty element </xs: documentation>2089
 </xs: annotation>2090
 <xs: complexContent>2091
 <xs: restriction base="xs: anyType"/>2092
 </xs: complexContent>2093
 </xs: complexType>2094
 <xs: element name="Extension" type="extensionType">2095
 <xs: annotation>2096
 <xs: documentation>2097
 An element that contains arbitrary content extensions 2098
 from other namespaces2099
 </xs: documentation>2100
 </xs: annotation>2101
 </xs: element>2102
 <xs: complexType name="extensionType">2103
 <xs: annotation>2104
 <xs: documentation>2105
 A type for arbitrary content extensions from other namespaces2106
 </xs: documentation>2107
 </xs: annotation>2108
 <xs: sequence>2109
 <xs: any namespace="##other" processContents="lax" maxOccurs="unbounded"/>2110
 </xs: sequence>2111
 </xs: complexType>2112
</xs: schema>2113

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

57

F. liberty-idwsf-authn-svc-v2.0.wsdl WSDL Listing2114

<?xml version="1.0"?>2115
<definitions name="AuthenticationService"2116
 targetNamespace="urn: liberty: sa: 2006-08"2117
 xmlns: tns="urn: liberty: sa: 2006-08"2118
 xmlns: xs="http: //www.w3.org/2001/XMLSchema"2119
 xmlns: S="http: //schemas.xmlsoap.org/wsdl/soap/"2120
 xmlns="http: //schemas.xmlsoap.org/wsdl/"2121
 xmlns: sa="urn: liberty: sa: 2006-08"2122
 xmlns: wsaw="http: //www.w3.org/2006/02/addressing/wsdl"2123
 xmlns: xsd="http: //www.w3.org/2001/XMLSchema" 2124
 xmlns: xsi="http: //www.w3.org/2001/XMLSchema-instance"2125
 xsi: schemaLocation="http: //schemas.xmlsoap.org/wsdl/2126
 http: //schemas.xmlsoap.org/wsdl/2127
 http: //www.w3.org/2006/02/addressing/wsdl2128
 http: //www.w3.org/2006/02/addressing/wsdl/ws-addr-wsdl.xsd">2129

2130
 2131

2132
 <xsd: documentation>2133

2134
 XML Authentication Schema from Liberty ID-WSF Authentication,2135
 Single Sign-On, and Identity Mapping Services Specification2136

2137
 ### NOTICE ###2138

2139
 Copyright (c) 2006 Liberty Alliance participants, see2140
 http: //www.projectliberty.org/specs/idwsf_2_0_final_copyrights.php2141

2142
 </xsd: documentation>2143
 <types>2144
 <xs: schema>2145
 <xs: import namespace="urn: liberty: sa: 2006-08"2146
 schemaLocation="liberty-idwsf-authn-svc-v2.0.xsd"/>schemaLocation="liberty-idwsf-authn-svc-v2.0.xsd" />2147
 </xs: schema>2148
 </types>2149

2150
 <message name="AuthenticationSoapRequest">2151
 <part name="parameters" element="sa: SASLRequest"/>element="sa: SASLRequest" />2152
 </message>2153
 <message name="AuthenticationSoapResponse">2154
 <part name="parameters" element="sa: SASLResponse"/>element="sa: SASLResponse" />2155
 </message>2156
 2157
 <portType name="AuthServicePortType">2158
 <operation name="Authenticate">2159
 <input message="sa: AuthenticationSoapRequest"2160
 wsaw: Action="urn: liberty: sa: 2006-08: SASLRequest"/>2161
 <output message="sa: AuthenticationSoapResponse"2162
 wsaw: Action="urn: liberty: sa: 2006-08: SASLResponse"/>2163
 </operation>2164
 </portType>2165
 <binding name="AuthenticationSoapBinding" type="sa: AuthServicePortType">2166
 <S: binding style="document" transport="http: //schemas.xmlsoap.org/soap/http"/>2167
 <operation name="Authenticate">2168
 <S: operation soapAction="urn: liberty: sa: 2006-08: Authenticate" style="document"/>2169
 <input>2170
 <S: body use="literal"/>use="literal" />2171
 </input>2172
 <output>2173
 <S: body use="literal"/>use="literal" />2174
 </output>2175
 </operation>2176
 </binding>2177
 <service name="AuthenticationService">2178
 <port name="AuthServicePortType" binding="sa: AuthenticationSoapBinding">2179

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

58

 <S: address location="http: //example.com/authentication"/>2180
 </port>2181
 </service>2182
</definitions>2183

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

59

G. liberty-idwsf-sso-svc-v2.0.wsdl WSDL Listing2184

<?xml version="1.0"?>2185
<definitions name="AuthenticationService"2186
 targetNamespace="urn: liberty: ssos: 2006-08"2187
 xmlns: tns="urn: liberty: ssos: 2006-08"2188
 xmlns: xs="http: //www.w3.org/2001/XMLSchema"2189
 xmlns: S="http: //schemas.xmlsoap.org/wsdl/soap/"2190
 xmlns="http: //schemas.xmlsoap.org/wsdl/"2191
 xmlns: ssos="urn: liberty: ssos: 2006-08"2192
 xmlns: samlp2="urn: oasis: names: tc: SAML: 2.0: protocol"2193
 xmlns: wsaw="http: //www.w3.org/2006/02/addressing/wsdl"2194
 xmlns: xsd="http: //www.w3.org/2001/XMLSchema" 2195
 xmlns: xsi="http: //www.w3.org/2001/XMLSchema-instance"2196
 xsi: schemaLocation="http: //schemas.xmlsoap.org/wsdl/2197
 http: //schemas.xmlsoap.org/wsdl/2198
 http: //www.w3.org/2006/02/addressing/wsdl2199
 http: //www.w3.org/2006/02/addressing/wsdl/ws-addr-wsdl.xsd">2200

2201
 2202

2203
 <xsd: documentation>2204

2205
 XML SSO Schema from Liberty ID-WSF Authentication, Single2206
 Sign-On, and Identity Mapping Services Specification2207

2208
 ### NOTICE ###2209

2210
 Copyright (c) 2006 Liberty Alliance participants, see2211
 http: //www.projectliberty.org/specs/idwsf_2_0_final_copyrights.php2212

2213
 </xsd: documentation>2214
 <types>2215
 <xs: schema>2216
 <xs: import namespace="urn: oasis: names: tc: SAML: 2.0: protocol"2217
 schemaLocation="saml-schema-protocol-2.0.xsd"/>schemaLocation="saml-schema-protocol-2.0.xsd" />2218
 </xs: schema>2219
 </types>2220

2221
 <message name="SSOSoapRequest">2222
 <part name="parameters" element="samlp2: AuthnRequest"/>element="samlp2: AuthnRequest" />2223
 </message>2224
 <message name="SSOSoapResponse">2225
 <part name="parameters" element="samlp2: Response"/>element="samlp2: Response" />2226
 </message>2227
 2228
 <portType name="SSOSPortType">2229
 <operation name="SingleSignOn">2230
 <input message="ssos: SSOSoapRequest"2231
 wsaw: Action="urn: liberty: ssos: 2006-08: AuthnRequest"/>2232
 <output message="ssos: SSOSoapResponse"2233
 wsaw: Action="urn: liberty: ssos: 2006-08: Response"/>2234
 </operation>2235
 </portType>2236
 <binding name="SSOSSoapBinding" type="ssos: SSOSPortType">2237
 <S: binding style="document" transport="http: //schemas.xmlsoap.org/soap/http"/>2238
 <operation name="SingleSignOn">2239
 <S: operation soapAction="urn: liberty: ssos: 2006-08: SingleSignOn" style="document"/>2240
 <input> 2241
 <S: body use="literal"/>use="literal" />2242
 </input>2243
 <output>2244
 <S: body use="literal"/>use="literal" />2245
 </output>2246
 </operation>2247
 </binding>2248
 <service name="SSOService">2249

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

60

 <port name="SSOSPortType" binding="ssos: SSOSSoapBinding">2250
 <S: address location="http: //example.com/idmapping"/>2251
 </port>2252
 </service>2253
</definitions>2254

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

61

H. liberty-idwsf-idmapping-svc-v2.0.wsdl WSDL Listing2255

<?xml version="1.0"?>2256
<definitions name="AuthenticationService"2257
 targetNamespace="urn: liberty: ims: 2006-08"2258
 xmlns: tns="urn: liberty: ims: 2006-08"2259
 xmlns: xs="http: //www.w3.org/2001/XMLSchema"2260
 xmlns: S="http: //schemas.xmlsoap.org/wsdl/soap/"2261
 xmlns="http: //schemas.xmlsoap.org/wsdl/"2262
 xmlns: ims="urn: liberty: ims: 2006-08"2263
 xmlns: wsaw="http: //www.w3.org/2006/02/addressing/wsdl"2264
 xmlns: xsd="http: //www.w3.org/2001/XMLSchema" 2265
 xmlns: xsi="http: //www.w3.org/2001/XMLSchema-instance"2266
 xsi: schemaLocation="http: //schemas.xmlsoap.org/wsdl/2267
 http: //schemas.xmlsoap.org/wsdl/2268
 http: //www.w3.org/2006/02/addressing/wsdl2269
 http: //www.w3.org/2006/02/addressing/wsdl/ws-addr-wsdl.xsd">2270

2271
 2272

2273
 <xsd: documentation>2274

2275
 XML ID Mapping Schema from Liberty ID-WSF Authentication, Single2276
 Sign-On, and Identity Mapping Services Specification2277

2278
 ### NOTICE ###2279

2280
 Copyright (c) 2006 Liberty Alliance participants, see2281
 http: //www.projectliberty.org/specs/idwsf_2_0_final_copyrights.php2282

2283
 </xsd: documentation>2284
 <types>2285
 <xs: schema>2286
 <xs: import namespace="urn: liberty: ims: 2006-08"2287
 schemaLocation="liberty-idwsf-idmapping-svc-v2.0.xsd"/>schemaLocation="liberty-idwsf-idmapping-svc-v2.0.xsd" />2288
 </xs: schema>2289
 </types>2290

2291
 <message name="IdentityMappingSoapRequest">2292
 <part name="parameters" element="ims: IdentityMappingRequest"/>element="ims: IdentityMappingRequest" />2293
 </message>2294
 <message name="IdentityMappingSoapResponse">2295
 <part name="parameters" element="ims: IdentityMappingResponse"/>element="ims: IdentityMappingResponse" />2296
 </message>2297
 2298
 <portType name="IdMappingPortType">2299
 <operation name="IdentityMapping">2300
 <input message="ims: IdentityMappingSoapRequest"2301
 wsaw: Action="urn: liberty: ims: 2006-08: IdentityMappingRequest"/>2302
 <output message="ims: IdentityMappingSoapResponse"2303
 wsaw: Action="urn: liberty: ims: 2006-08: IdentityMappingResponse"/>2304
 </operation>2305
 </portType>2306
 <binding name="IdMappingSoapBinding" type="ims: IdMappingPortType">2307
 <S: binding style="document" transport="http: //schemas.xmlsoap.org/soap/http"/>2308
 <operation name="IdentityMapping">2309
 <S: operation soapAction="urn: liberty: ims: 2006-08: IdentityMapping" style="document"/>2310
 <input> 2311
 <S: body use="literal"/>use="literal" />2312
 </input>2313
 <output>2314
 <S: body use="literal"/>use="literal" />2315
 </output>2316
 </operation>2317
 </binding>2318
 <service name="IdMappingService">2319
 <port name="IdMappingPortType" binding="ims: IdMappingSoapBinding">2320

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

62

 <S: address location="http: //example.com/idmapping"/>2321
 </port>2322
 </service>2323
</definitions>2324

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

63

	Introduction
	Notation and Conventions
	Requirements Keywords
	XML Namespaces

	Terminology
	Authentication Protocol
	Conceptual Model
	Schema Declarations
	SOAP Header Blocks and SOAP Binding
	SOAP Binding

	SASL Profile Particulars
	SASL "Service Name"
	Composition of SASL Mechanism Names

	Authentication Exchange Security
	Protocol Messages
	The <SASLRequest> Message
	<SASLRequest> Usage
	Values for mechanism attribute of <SASLRequest>

	The <SASLResponse> Message
	<SASLResponse> Usage
	Values for the code attribute of <Status>
	Returning the Server's Selected SASL Mechanism

	Sequencing of the Authentication Exchange

	Authentication Service
	Conceptual Model
	Stipulating a Particular Authentication Context

	URI Declarations
	Rules for Authentication Service Providers
	Rules for Authentication Service Consumers
	Authentication Service Interaction Example

	Single Sign-On Service
	Conceptual Model
	Single Sign-On Service URIs
	ID-WSF Enhanced Client or Proxy SSO Profile
	Profile Overview
	Profile Description

	ID-WSF SAML Token Service Profile
	Profile Overview
	Profile Description
	Use of SAML 2.0 Authentication Request Protocol
	<samlp2:AuthnRequest> Usage
	<samlp2: Response><samlp2: Response > Usage

	Use of Metadata
	Inclusion of ID-WSF Endpoint References

	Identity Mapping Service
	Conceptual Model
	Schema Declarations
	SOAP Binding
	Identity Mapping Service URIs

	Protocol Messages and Usage
	Element <IdentityMappingRequest>
	Element <MappingInput>
	Request Usage

	Element <IdentityMappingResponse>
	Element <MappingOutput>
	Response Usage
	Second-Level Status Codes

	SAML Identity Tokens
	Assertions
	Identifiers

	Security and Privacy Considerations
	Example Identity Mapping Exchange

	Password Transformations: The PasswordTransforms Element
	Acknowledgments
	Truncation
	Lowercase
	Uppercase
	Select

