
Liberty ID-WSF SOAP Binding Specification
Version:

2.0-errata-v1.0

Editors:
Jeff Hodges, NeuStar, Inc.
John Kemp, Nokia Corporation
Robert Aarts, Hewlett-Packard
Greg Whitehead, Hewlett-Packard
Paul Madsen, NTT
Contributors:
Conor Cahill, America Online, Inc.
Darryl Champagne, IEEE-ISTO
Marc Hadley, Sun Microsystems, Inc.
Jukka Kainulainen, Nokia Corporation

Rob

Lockhart
, IEEE-ISTO
Jonathan Sergent, Sun Microsystems, Inc.
Abstract:

This specification defines a SOAP binding for the Liberty Identity Web Services Framework (ID-WSF) and the Liberty
Identity Services Interface Specifications (ID-SIS). It specifies use of the Web Services Addressing (WS-Addressing)
SOAP extension, as well as provider declaration, processing context, consent claims, usage directives and a number
of other optional headers.

Filename: liberty-idwsf-soap-binding-2.0-diff-v1.0.pdf

Liberty Alliance Project: Version: 2.0-errata-v1.0
This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

1

Notice1

This document has been prepared by Sponsors of the Liberty Alliance. Permission is hereby granted to use the document2
solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works of this3
Specification. Entities seeking permission to reproduce portions of this document for other uses must contact the Liberty4
Alliance to determine whether an appropriate license for such use is available.5

Implementation of certain elements of this document may require licenses under third party intellectual property rights,6
including without limitation, patent rights. The Sponsors of and any other contributors to the Specification are not and7
shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual8
property rights. This Specification is provided "AS IS", and no participant in the Liberty Alliance makes any9
warranty of any kind, express or implied, including any implied warranties of merchantability, non-infringe-10
ment of third party intellectual property rights, and fitness for a particular purpose. Implementers of this11
Specification are advised to review the Liberty Alliance Project's website (http: //www.projectliberty.org/) for infor-12
mation concerning any Necessary Claims Disclosure Notices that have been received by the Liberty Alliance13
Management Board.14

Copyright © 2007 2FA Technology; Adobe Systems; Agencia Catalana De Certificacio; America Online, Inc.; Amer-15
ican Express Company; Amsoft Systems Pvt Ltd.; Avatier Corporation; BIPAC; BMC Software, Inc.;Axalto; Bank of16
America Corporation; Beta Systems Software AG;BIPAC; British Telecommunications plc; Computer Associates17
International, Inc.; Credentica; DataPower Technology, Inc.; Deutsche Telekom AG, T-Com; Diamelle Technologies,18
Inc.; Diversinet Corp.; Drummond Group Inc.; Enosis Group LLC; Entrust, Inc.; Epok, Inc.; Ericsson; Falkin Systems19
LLC; Fidelity Investments; Forum Systems, Inc.; France Télécom; French Government Agence pour le développement20
de l'administration électronique (ADAE); Fugen Solutions, Inc; Fulvens Ltd.; GSA Office of Governmentwide Policy;21
Gamefederation; Gemalto; General Motors; GeoFederation; Giesecke & Devrient GmbH; Hewlett-PackardGSA Office22
Company; Hochhauserof & Co.,Policy; Hewlett-Packard LLC; IBM Corporation; Intel Corporation; Intuit Inc.; Kant-23
ega; Kayak Interactive; Livo Technologies; Luminance Consulting Services; MasterCard International; MedCommons24
Inc.; Mobile Telephone Networks (Pty) Ltd; NEC Corporation; NTT DoCoMo, Inc.; Netegrity, Inc.; Neustar, Inc.;25
New Zealand Government State Services Commission; Nippon Telegraph and Telephone Corporation; Nokia Corpo-26
ration; Novell, Inc.; NTT DoCoMo, Inc.; OpenNetwork; Oracle Corporation; Ping Identity Corporation; RSA Security27
Inc.; Reactivity Inc.; Royal Mail Group plc; RSA Security Inc.; SAP AG; Senforce; Sharp Laboratories of America;28
Sigaba; SmartTrust; Sony Corporation; Sun Microsystems, Inc.; Supremacy Financial Corporation; Symlabs, Inc.;29
Telecom Italia S.p.A.; Telefónica Móviles, S.A.; Telenor R&D; Thales e-Security; Trusted Network Technologies;30
UNINETT AS; UTI; VeriSign, Inc.; Vodafone Group Plc.; Wave Systems Corp. All rights reserved.31

 Liberty Alliance Project32
 Licensing Administrator33
 c/o IEEE-ISTO34
 445 Hoes Lane35
 Piscataway, NJ 08855-1331, USA36
 info@projectliberty.org37

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

2

http://www.projectliberty.org/

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

3

Contents38

1. Introduction.. 639
2. Notation and Conventions ... 840
2.1. XML Namespaces... 841
2.2. Terminology .. 942
2.3. Treatment of Boolean Values .. 1143
2.4. String and URI Values ... 1144
2.5. Time Values... 1245
3. Schema Particulars... 1346
3.1. Schema Declarations ... 1347
3.2. "ID" Attributes .. 1348
3.3. Status Types... 1349
3.3.1. Status Codes .. 1450
3.4. SOAP Fault Types .. 1651
4. SOAP Binding .. 1752
4.1. SOAP Version ... 1753
4.2. The SOAPAction HTTP Header .. 1754
4.3. Ordinary ID-* Messages... 1755
4.4. ID-* Fault Messages .. 1756
4.5. SOAP-bound ID-* Messages .. 1857
5. Messaging-specific Header Blocks.. 2158
5.1. The <wsu: Timestamp> element in the <wsse: Security> Header Block .. 2159
5.2. The <wsa: MessageID> Header Block .. 2160
5.2.1. <wsa: MessageID> Value Requirements ... 2161
5.3. The <wsa: RelatesTo> Header Block .. 2162
5.4. The <wsa: To> Header Block ... 2263
5.5. The <wsa: Action> Header Block .. 2264
5.6. The <wsa: ReplyTo> Header Block .. 2265
5.7. The <wsa: FaultTo> Header Block .. 2266
5.8. The <sbf: Framework> Header Block .. 2267
5.9. The <Sender> Header Block ... 2368
5.10. The <TargetIdentity> Header Block ... 2469
5.11. Messaging Processing Rules .. 2570
5.11.1. Constructing and Sending a SOAP-bound ID-* Message ... 2671
5.11.2. Receiving and Processing a SOAP-bound ID-* Message ... 2772
5.12. Examples .. 3173
6. Optional Header Blocks .. 3474
6.1. The <ProcessingContext> Header Block ... 3475
6.1.1. The <ProcessingContext> Type and Element ... 3476
6.1.2. <ProcessingContext> Header Block Semantics and Processing Rules ... 3577
6.2. The <Consent> Header Block ... 3778
6.2.1. The <Consent> Type and Element ... 3879
6.3. The <CredentialsContext> Header Block .. 3880
6.3.1. Overview ... 3881
6.3.2. CredentialsContext Type and Element ... 3982
6.3.3. CredentialsContext Example .. 4083
6.3.4. Processing Rules ... 4084
6.4. The <EndpointUpdate> Header Block ... 4185
6.4.1. Overview ... 4186
6.4.2. EndpointUpdate Type and Element .. 4187
6.4.3. EndpointUpdate Examples ... 4288
6.4.4. Processing Rules for the EndpointUpdate header ... 4389

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

4

6.4.5. Processing Rules for the EndpointUpdated SOAP Fault .. 4490
6.5. The <Timeout> Header Block ... 4591
6.5.1. Overview ... 4592
6.5.2. Timeout Type and Element .. 4593
6.5.3. Timeout Example .. 4694
6.5.4. Processing Rules .. 4795
6.6. The <UsageDirective> Header Block ... 4796
6.6.1. Overview .. 4797
6.6.2. UsageDirective Type and Element .. 4798
6.6.3. Usage Directive Examples.. 4899
6.6.4. Processing Rules .. 49100
6.7. The <ApplicationEPR> Header Block ... 49101
6.8. The <UserInteraction> Header Block ... 50102
6.8.1. Overview .. 50103
6.8.2. UserInteraction Element .. 50104
6.8.3. UserInteraction Examples .. 51105
6.8.4. Processing Rules .. 52106
6.8.5. Cross-principal interactions .. 53107
7. The RedirectRequest Protocol ... 54108
7.1. RedirectRequest Element... 54109
7.1.1. Processing Rules .. 54110
7.2. RedirectRequest Protocol... 55111
7.2.1. Step 1: WSC Issues Normal ID-WSF Request .. 55112
7.2.2. Step 2: WSP Responds with <RedirectRequest> .. 55113
7.2.3. Step 3: WSC Instructs User Agent to Contact the WSP .. 56114
7.2.4. Step 4: WSP Interacts with User Agent ... 56115
7.2.5. Step 5: WSP Redirects User Agent Back to WSC ... 56116
7.2.6. Step 6: User Agent Requests ReturnToURL from WSC... 56117
7.2.7. Step 7: WSC Resends Message ... 57118
7.2.8. Steps 8: WSP sends response .. 57119
7.2.9. Steps 9: WSC sends HTTP response to User Agent ... 57120
8. Security Considerations ... 58121
9. Acknowledgements.. 59122
References... 60123
A. liberty-idwsf-soap-binding.xsd Schema Listing... 63124
B. liberty-idwsf-soap-binding-v2.0.xsd Schema Listing.. 64125
C. liberty-idwsf-utility-v2.0.xsd Schema Listing ... 67126
D. liberty-utility-v2.0.xsd Schema Listing.. 69127
E. wss-util-1.0.xsd Schema Listing... 71128
F. ws-addr-1.0.xsd Schema Listing... 73129

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

5

1. Introduction130

The Liberty Identity Web Services Framework (ID-WSF) [LibertyIDWSFOverview] is designed so that "application131
layer" messages or "services" messages utilizing the framework, referred to as ID-* messages in this specification, may132
be mapped onto various transport or transfer protocols. Thus, they are designed to be conveyed in the data portion of133
the underlying protocol's messages. ID-* messages do not intrinsically address specific aspects of message exchange134
such as: to which system entity the message is to be sent, message correlation, the mechanics of message exchange,135
or security context.136

Examples of ID-* messages include the <DiscoveryLookupRequest> message of [LibertyDisco], and the137
<Modify> message of [LibertyIDPP].138

This specification defines a mapping of ID-* messages onto SOAP [SOAPv1.1], an XML-based [XML] messaging139
protocol.140

SOAP itself does not define the specific message exchange aspects mentioned above, but offers an extensibility mod-141
el that may be used to define message components that do address such message exchange specifics. SOAP extensibility142
is effected by adding message components to the portion of the SOAP message called the Header. These message143
components are referred to as SOAP header blocks [SOAPv1.2].144

WS-Addressing SOAP Binding [WSAv1.0-SOAP] is a SOAP extension that defines a set of SOAP header blocks that145
facilitate end-to-end addressing and message correlation. This specification profiles WSAv1.0-SOAP to address spe-146
cific aspects of ID-* message exchange functionality.147

This specification also defines several optional SOAP header blocks relevant to ID-* message processing. They are:148

• Processing Context:149

An ID-* requester may need to express additional context for a given request, for example indi-150
cating that the requester expects to make such requests in the future when the Principal may or151
may not be online. This specification defines the <ProcessingContext> header block for this152
purpose.153

• Consent Claims:154

ID-WSF-based entities may wish to claim whether they obtained the Principal's consent for car-155
rying out any given operation, such as updating a Principal's Personal Profile entry [Liber-156
tyIDPP]. This specification defines the <Consent> header block for this purpose.157

• Credentials Context:158

The receiver of an ID-* message might indicate that credentials supplied in the request did not159
meet its policy in allowing access to the requested resource. The <CredentialsContext>160
header block allows such policies to be expressed to the requester.161

• Endpoint Update:162

The <EndpointUpdate> header block allows a service to indicate that requesters should contact163
it on a different endpoint or use a different security mechanism and credentials to access the164
requested resource.165

• Timeout:166

The <Timeout> header block is defined in this specification to allow the receiver of an ID-*167
message to indicate that processing of the received message failed due to a timeout condition.168

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

6

• Usage Directives:169

ID-WSF-based entities may wish to indicate their policies for handling data at the time of data170
request, and entities releasing data may wish to specify their policies for the subsequent use of171
data at the time of data release. This specification defines the <UsageDirective> header block172
for this purpose.173

• Application EPR:174

This specification defines the <ApplicationEPR> header block as a means for a sender to175
specify application endpoints that may be referenced from the SOAP Body of the message.176

• User Interaction:177

A WSC that interacts with a user (typically through a web-site offered by the WSC) may need178
to indicate its readiness to redirect the user agent of the user, or its readiness to pose questions179
to the user on behalf of other parties (such as WSPs). This specification defines the180
<UserInteraction> header block for this purpose.181

Additionally, this specification defines how ID-* messages are bound into SOAP message bodies, and how the SOAP182
header blocks implementing the above functionalities are bound into SOAP message headers.183

Note that other specifications in the ID-WSF specification suite also define SOAP header blocks, for example [Liber-184
tySecMech], which may be used concurrently with the header blocks defined in this specification. Header blocks185
specified in specifications outside of the ID-WSF specification suite may also be composed with ID-WSF header blocks.186
An example is the <wsse: Security> header block as discussed in [LibertySecMech] . However no further mention187
of doing such is made in this specification.188

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

7

2. Notation and Conventions189

This specification uses schema documents conforming to W3C XML Schema [Schema1-2] and normative text to190
describe the syntax and semantics of XML-encoded protocol messages.191

The key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT," "SHOULD," "SHOULD NOT,"192
"RECOMMENDED," "MAY," and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]:193

“ they MUST only be used where it is actually required for interoperation or to limit behavior which194
has potential for causing harm (e.g., limiting retransmissions) ”195

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application196
features and behavior that affect the interoperability and security of implementations. When these words are not cap-197
italized, they are meant in their natural-language sense.198

2.1. XML Namespaces199

This specification makes normative use of the XML namespace prefixes noted in Table 1.200

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

8

Table 1. XML Namespaces and Prefixes201

Pre-
fix

Namespace

sb: Represents the Liberty SOAP Binding namespace (v2.0): urn: liberty: sb: 2006-08

Note

This is the point of definition of this namespace. This namespace is the default for instance fragments,
type names, and element names in this document when a namespace is not explicitly noted.

sbf: Represents the Liberty SOAP Binding namespace (cross-version framework): urn: liberty: sb

Note

This is the point of definition of this namespace.

idpp: Represents the namespace defined in [LibertyIDPP].

is: Represents the namespace defined in [LibertyInteract].

S: Represents the SOAP namespace: http: //schemas.xmlsoap.org/soap/envelope/

This namespace is defined in [SOAPv1.1].

saml
p:

Represents the namespace defined in [SAMLCore2].

wsa: Represents the WS-Addressing namespace: http: //www.w3.org/2005/08/addressing

This namespace is defined in [WSAv1.0].

wsse: Represents the SOAP Message Security namespace:
http: //docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity-secext-1.0.xsd

This namespace is defined in [wss-sms].

wsu: Represents the SOAP Message Security Utility namespace:
http: //docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity-

utility-1.0.xsd

This namespace is defined in [wss-sms].

xs: Represents the W3C XML schema namespace:
http: //www.w3.org/2001/XMLSchema

This namespace is defined in [Schema1-2].

2.2. Terminology202

This section defines key terminology used in this specification. Definitions for other Liberty-specific terms can be203
found in [LibertyGlossary]. See also [RFC2828] for overall definitions of security-related terms.204

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

9

affiliation An affiliation is a set of one or more entities, described by Provider IDs, who may perform205
Liberty interactions as a member of the set. An affiliation is referenced by exactly one Affili-206
ation ID, and is administered by exactly one entity identified by their Provider ID. Members207
of an affiliation may invoke services either as a member of the affiliation--by virtue of their208
Affiliation ID, or individually by virtue of their Provider ID [LibertyGlossary].209

Affiliation ID An Affiliation ID identifies an affiliation. It is schematically represented by the210
affiliationID attribute of the <AffiliationDescriptor> metadata element [Liberty-211
Metadata].212

client A role assumed by a system entity which makes a request of another system entity, often213
termed a server [RFC2828], i.e., a client is also a sender.214

ID-* A shorthand designator referring to the Liberty ID-WSF, ID-FF, and ID-SIS specification215
sets. For example, one might say that the former specification sets are all part of the Liberty216
ID-* specification suite.217

ID-* header block One of the header blocks defined in this specification, or defined in any of the other Liberty218
ID-* specification suite.219

ID-* message Equivalent to ordinary ID-* message.220

ID-* fault message See Section 4.4.221

ID-SIS Liberty Identity Service Interface specification set.222

ID-WSF Liberty Identity Web Services Framework specification set.223

MEP see Message Exchange Pattern.224

Message Exchange
Pattern

A [SOAPv1.2] term for the overall notion of various patterns of message exchange between225
SOAP nodes. For example, request-reply and one-way are two MEPs used in this specifica-226
tion.227

message thread A message thread is an exchange of messages in a request-response MEP between two SOAP228
nodes. All the messages of a given message thread are "linked" via each message's <wsa:229
RelatesTo> header block value being set, by the sender, from the previous successfully230
received message's <wsa: MessageID> header block value.231

Ordinary ID-* mes-
sage

See Section 4.3.232

processing context A processing context is the collection of specific circumstances under which a particular233
processing step or set of steps take place.234

processing context
facet

A processing context facet is an identified aspect, inherent or additive, of a processing con-235
text.236

provider A provider is a Liberty-enabled entity that performs one or more of the provider roles in the237
Liberty architecture, for example Service Provider or Identity Provider. See also Liberty-238
enabled Provider in [LibertyGlossary]. Providers are identified in Liberty protocol interac-239
tions by their Provider IDs or optionally their Affiliation ID if they are a member of an240
affiliation(s) and are acting in that capacity.241

Provider ID A Provider ID identifies an entity known as a provider. It is schematically represented by the242
providerID attribute of the <EntityDescriptor> metadata element [LibertyMetadata].243

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

10

receiver A role taken by a system entity when it receives a message sent by another system entity. See244
also SOAP receiver in [SOAPv1.2].245

role A function or part performed, especially in a particular operation or process [Merriam-Web-246
ster].247

sender A role donned by a system entity when it constructs and sends a message to another system248
entity. See also SOAP sender in [SOAPv1.2].249

server A role performed by a system entity that provides a service in response to requests from other250
system entities called clients [RFC2828]. Note that in order to provide a service to clients; a251
server will often be both a sender and a receiver.252

service request A service request is another term for an ordinary ID-* message. Service request is also loosely253
equivalent to a "SOAP-bound (ordinary) ID-* message."254

SOAP-bound ID-*
message

See Section 4.5.255

SOAP header block A [SOAPv1.2] term whose definition is: An [element] used to delimit data that logically256
constitutes a single computational unit within the SOAP header. In [SOAPv1.1] these are257
known as simply SOAP headers, or simply headers. This specification uses the SOAPv1.2258
terminology.259

SOAP message In this specification, the term SOAP message refers to a message consisting of only a <S:260
Envelope> element as defined in [SOAPv1.1]. It contains two top-level subelements: <S:261
Header> and <S: Body>. This message is in turn mapped onto a lower-layer transport or262
transfer protocol, typically HTTP [RFC2616].263

SOAP node A [SOAPv1.2] term describing system entities who are parties to SOAP-based message ex-264
changes that are, for purposes of this specification, also the ultimate destination of the265
exchanged messages, i.e., SOAP endpoints. In [SOAPv1.1], SOAP nodes are referred to as266
SOAP endpoints, or simply endpoints. This specification uses the SOAPv1.2 terminology.267

system entity An active element of a computer/network system. For example, an automated process or set268
of processes, a subsystem, a person or group of persons that incorporates a distinct set of269
functionality [SAMLGloss2].270

2.3. Treatment of Boolean Values271

For readability, when an XML Schema type is specified to be xsd: boolean, this document discusses the values as272
TRUE and FALSE rather than "1" and "0", which will exist in a document instance conforming to the SOAP Envelope273
1.1 schema [SOAPv1.1-Schema].274

2.4. String and URI Values275

All string and URI [RFC3986] values in this specification have the types string (as a base type in this case) and276
anyURI respectively, which are built in to the W3C XML Schema Datatypes specification [Schema2-2]. All strings277
in ID-WSF messages MUST consist of at least one non-whitespace character (whitespace is defined in the XML278
Recommendation [XML] section 2.3). Empty and whitespace-only values are disallowed. Also, unless otherwise in-279
dicated in this specification, all URI values MUST consist of at least one non-whitespace character.280

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

11

Note281

Various element and/or attribute components of the schema described by this specification (see Appen-282
dix A: SOAP Binding Schema XSD , below) may have further requirements placed on the values they may283
take on. For example, see Section 5.2.1: <wsa: MessageID> Value Requirements .284

2.5. Time Values285

All time values in this specification have the type dateTime, which is built in to the W3C XML Schema Datatypes286
specification [Schema2-2] and MUST be expressed in UTC form.287

Senders and receivers SHOULD NOT rely on other applications supporting time resolution finer than milliseconds.288
Implementations MUST NOT generate time instants that specify leap seconds.289

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

12

3. Schema Particulars290

This section addresses schema particulars such as which schemas this specification defines, describes, and depends291
upon, as well as various underlying schema types.292

3.1. Schema Declarations293

This specification normatively defines and describes an XML schema which is constituted in the XML Schema294
[Schema1-2] files ("Liberty ID-WSF SOAP Binding Schema v2.0," reproduced in Appendix A). In addition, the295
Liberty ID-WSF SOAP Binding Schema file explicitly includes, in the XML Schema sense, the Liberty ID-WSF utility296
schema file (reproduced in Appendix C).297

Also, the Liberty ID-WSF SOAP Binding Schema files explicitly depend upon the SOAP Message Security Utility298
1.0 schema [wss-sms] (reproduced in Appendix E) and Web Services Addressing 1.0 schema [WSAv1.0-Schema]299
(reproduced in Appendix F).300

3.2. "ID" Attributes301

The XML Schema [Schema1-2] type xs: ID is used to declare ID attributes on elements, such as SOAP header blocks,302
that must be referenceable, say by an XML Signature [LibertySecMech]. It should be noted that XML processors, such303
as XML Signature verifiers, must be aware of the xs: ID type of these ID attributes in order resolve references to the304
elements they identify.305

In this specification, as in Web Services Security and Web Services Addressing specifications on which this specifi-306
cation builds, xs: anyAttribute is used on all elements that must be capable of carrying an ID attribute. Interoper-307
ability profiles such as the ID-WSF SCR [LibertyIDWSF20SCR] may require use of a particular ID attribute such as308
xml: id. In the absence of such profile requirements wsu: Id [wss-sms] MUST be used.309

3.3. Status Types310

The <Status> element, of type StatusType complex type, is used in this specification to convey status codes and311
related information. The schema fragment in Figure 1, from the ID-WSF Utility schema (Appendix C), shows both the312
<Status> element and StatusType complex type.313

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

13

314
 <xs: complexType name="StatusType">315
 <xs: annotation>316
 <xs: documentation> 317
 A type that may be used for status codes. 318
 </xs: documentation>319
 </xs: annotation>320
 <xs: sequence>321
 <xs: element ref="Status" minOccurs="0" maxOccurs="unbounded"/>322
 </xs: sequence>323
 <xs: attribute name="code" type="xs: string" use="required"/>324
 <xs: attribute name="ref" type="IDReferenceType" use="optional"/>325
 <xs: attribute name="comment" type="xs: string" use="optional"/>326
 </xs: complexType>327

328
 <xs: element name="Status" type="StatusType">329
 <xs: annotation>330
 <xs: documentation> 331
 A standard Status type332
 </xs: documentation>333
 </xs: annotation>334
 </xs: element>335

336
337

 338

Figure 1. Status and StatusType Schema339

3.3.1. Status Codes340

This section lists, in Table 2, the values defined in this specification for the code attribute of the <Status> element.341
Other specifications MAY define additional code attribute values.342

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

14

Table 2. Status Codes343

Code Semantics Sugges-
ted Fault
Source

InvalidActor There is an issue with the actor attribute on the indicated header block
in the indicated message.

S: Client

InvalidMustUnderstand There is an issue with the mustUnderstand attribute on the indicated
header block in the indicated message.

S: Client

StaleMsg The indicated inbound SOAP-bound ID-* message has a timestamp
value outside of the receivers allowable time window.

S: Client

DuplicateMsg The indicated inbound SOAP-bound ID-* message appears to be a
duplicate.

S: Client

InvalidRefToMsgID The indicated inbound SOAP-bound ID-* message appears to incor-
rectly refer to the preceding message in the message thread.

S: Client

ProviderIDNotValid The receiver does not consider the claimed Provider ID to be valid. S: Client

AffiliationIDNotValid The receiver does not consider the claimed Affiliation ID to be valid. S: Client

TargetIdentityNotValid The receiver does not consider the target identity to be valid. S: Client

FrameworkVersionMis-
match

The framework version used in the conveyed ID-* message does not
match what was expected by the reciever.

S: Client

IDStarMsgNotUnderstood There was a problem with understanding/parsing the conveyed ID-*
message.

S: Client

ProcCtxURINotUnderstood The receiver did not understand the processing context facet URI. S: Server

ProcCtxUnwilling The receiver is unwilling to apply the sender's stipulated processing
context.

S: Server

CannotHonourUsageDirec-
tive

The receiver is unable or unwilling to honor the stipulated usage di-
rective.

S: Server

EndpointUpdated The request cannot be processed at this endpoint. This is typically used
in conjunction with the <EndpointUpdate> header block to indicate
the endpoint to which the request should be re-submitted.

S: Server

InappropriateCredentials The sender has submitted a request that does not meet the needs of the
receiver. The receiver may indicate credentials that are acceptable to
them via a <CredentialsContext> or <EndpointUpdate> header
block.

S: Client

ProcessingTimeout The sender is indicating that processing of the request has failed due
to the processing taking longer than the maxProcessingTime speci-
fied on the request <Timeout> header block.

S: Server

InteractionRequired the recipient has a need to start an interaction in order to satisfy the
service request but the interact attribute value was set to
DoNotInteract.

S: Server

InteractionRequiredForData the service request could not be satisfied because the WSP would have
to interact with the requesting principal in order to obtain (some of)
the requested data but the interact attribute value was set to
DoNotInteractForData.

S: Server

InteractionTimeNotSuffi-
cient

the recipient has a need to start an interaction but has reason to believe
that more time is needed that allowed for by the value of the
maxInteractTime attribute.

S: Server

InteractionTimeout the recipient could not satisfy the service request due to an unfinished
interaction.

S: Server

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

15

3.4. SOAP Fault Types344

The SOAPv1.1 Fault and detail complex types are used in this specification to convey processing exceptions.345

The schema fragment in Figure 2, extracted from [SOAPv1.1-Schema], defines the SOAPv1.1 Fault and detail346
complex types, which define the <S: Fault> and <detail> elements, respectively.347

Note348

The <S: Fault> element is not intended to be used as a SOAP header block. Rather, it is designed to be349
conveyed in the <S: Body> of a SOAP message.350

351
 <xs: element name="Fault" type="tns: Fault"/> 352

353
 <xs: complexType name="Fault" final="extension">354
 <xs: annotation>355
 <xs: documentation>356
 Fault reporting structure357
 </xs: documentation>358
 </xs: annotation>359
 <xs: sequence>360
 <xs: element name="faultcode" type="xs: QName"/>361
 <xs: element name="faultstring" type="xs: string"/>362
 <xs: element name="faultactor" type="xs: anyURI" minOccurs="0"/>363
 <xs: element name="detail" type="tns: detail" minOccurs="0"/>364
 </xs: sequence>365
 </xs: complexType>366

367
 <xs: complexType name="detail">368
 <xs: sequence>369
 <xs: any namespace="##any" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>370
 </xs: sequence>371
 <xs: anyAttribute namespace="##any" processContents="lax"/>372
 </xs: complexType>373

374
 375

Figure 2. SOAP Fault and detail Types Schema376

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

16

4. SOAP Binding377

This section defines the notion of ID-* messages and the overall, high-level considerations with respect to binding378
them into SOAP messages for subsequent conveyance. The detailed processing rules are then given in379
Section 5.11: Messaging Processing Rules.380

4.1. SOAP Version381

This specification normatively depends upon SOAP version 1.1, as specified in [SOAPv1.1]. Messages conformant to382
this specification MUST also be conformant to [SOAPv1.1].383

4.2. The SOAPAction HTTP Header384

[SOAPv1.1] defines the SOAPAction HTTP header, and requires its usage on HTTP-bound SOAP messages. This385
header may be used to indicate the "intent" of a SOAP message to the recipient.386

Note387

The value of the SOAPAction HTTP header SHOULD the same as the value of the <wsa: Action> header388
block (see Section 5.5: The <wsa: Action> Header Block).389

Also note that [WSDLv1.1] documents may be defined that specify the value of the SOAPAction header to390
be included on messages sent to the service defined in WSDL.391

4.3. Ordinary ID-* Messages392

Ordinary ID-* messages are so-called "application layer" messages or "services" messages, of the forms defined in the393
Liberty ID-WSF and ID-SIS specification sets or by other applications or services building on the Liberty ID-WSF394
specifications. These messages as a class are characterized by being able to be correctly conveyed in the "Body" of a395
SOAP [SOAPv1.1] message. See Example 1. Such messages share the characteristic of needing to be mapped onto an396
underlying transport or transfer protocol in order for them to be communicated between system entities.397

 398
 <idpp: Query>399
 : 400
 <!-- various message-specific subelements may go here --> 401
 : 402
 </idpp: Query>403
 404

Example 1. A Specific ID-* Message: The <idpp: Query> Message405

4.4. ID-* Fault Messages406

An ID-* Fault Message consists of a SOAP <S: Fault> element (see Section 3.4: SOAP Fault Types) constructed as407
specified herein.408

When reporting a SOAP processing error such as "S: VersionMismatch" or "S: MustUnderstand," the <S:409
Fault> element SHOULD be constucted according to [SOAPv1.1].410

When reporting a WS-Addressing processing error such as "wsa: InvalidAddress," the <S: Fault> element411
SHOULD be constucted according to [WSAv1.0-SOAP].412

For all other processing errors the <S: Fault> element's attributes and child elements MUST be constrcuted according413
to these rules:414

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

17

1. The <S: Fault> element:415

A. SHOULD contain a <faultcode> element whose value SHOULD be one of "sbf:416
FrameworkVersionMismatch," "S: server" or "S: client."417

B. SHOULD contain a <faultstring> element. This string value MAY be localized.418

C. SHOULD NOT contain a <S: faultactor> element.419

2. The <S: Fault> element's <detail> child element SHOULD contain a <Status> element (see Section 3.3:420
Status Types). The <Status> element:421

A. MUST contain a code attribute set to the value as specified when the issuance of a ID-* Fault message is422
indicated. Code attribute values defined in this specification are listed above in Section 3.3.1. Other speci-423
fications MAY define additional code attribute values.424

B. MAY contain a ref attribute set to the value as specified in this specification when the issuance of a ID-*425
Fault message is indicated.426

C. MAY contain a comment attribute set to the value as specified in this specification when the issuance of a427
ID-* Fault message is indicated. This string value MAY be localized.428

3. Additionally, to aid in diagnostics, the header block or message body element referred to by the fault MAY be429
included in the <S: Fault> element's <detail> element, after the <Status> element.430

Note431

When reporting SOAP processing errors, the WS-Addressing action http://www.w3.org/2005/08/addressing/432
soap/fault SHOULD be used. When reporting WS-Addressing processing errors, the WS-Addressing action433
http://www.w3.org/2005/08/addressing/fault SHOULD be used. When reporting other processing errors, if434
no specific WS-Addressing action is defined, then http://www.w3.org/2005/08/addressing/soap/fault435
SHOULD be used.436

4.5. SOAP-bound ID-* Messages437

ID-* messages are bound into SOAP messages, yielding SOAP-bound ID-* messages. This binding thus provides a438
concrete means for ID-* message conveyance since [SOAPv1.1] specifies a binding to HTTP [RFC2616], which is439
itself layered onto the ubiquitous [TLS/SSL]/TCP/IP protocol stack.440

Although this binding is the only one given in this specification, other protocols could be used to convey ID-* messages,441
with appropriateness depending on the protocol selected and the target operational context. This is not discussed further442
in this specification.443

A SOAP-bound ID-* message is defined as:444

• having all required ID-* header blocks in its <S: Header> element, and,445

• perhaps having other optional ID-* header blocks in its <S: Header> element, and,446

• containing either an ordinary ID-* message, or an ID-* fault message, in its <S: Body> element. The former is447
known as an ordinary SOAP-bound ID-* message (see Example 2), and the latter is known as a SOAP-bound ID-448
* fault message (see Example 3).449

Section 5.11: Messaging Processing Rules specifies the detailed normative processing rules for constructing, sending,450
and receiving SOAP-bound ID-* messages.451

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

18

http://www.w3.org/2005/08/addressing/soap/fault
http://www.w3.org/2005/08/addressing/soap/fault
http://www.w3.org/2005/08/addressing/fault
http://www.w3.org/2005/08/addressing/soap/fault

452
 <S: Envelope xmlns: s="http: //schemas.xmlsoap.org/soap/envelope/"453
 xmlns: sb="..."454
 xmlns: idpp="urn: liberty: id-sis-pp: 2003-08">455
 456
 <S: Header>457

458
 ...459

460
 <wsse: Security>461
 <wsu: Timestamp>462
 <wsu: Created>2005-06-17T04: 49: 17Z</wsu: Created>463
 </wsu: Timestamp>464
 </wsse: Security>465

466
 <wsa: MessageId>...</wsa: MessageId>467

468
 <wsa: To>...</wsa: To>469

470
 <wsa: Action>...</wsa: Action>471

472
 <!-- reference params from target EndpointReference -->473

474
 <sbf: Framework version="2.0"/>475

476
 <sb: Sender providerID="..." affiliationID="..."/>477

478
 <wsa: ReplyTo>479
 <wsa: Address>...</wsa: Address>480
 </wsa: ReplyTo>481

482
 ...483
 484
 </S: Header>485
 486
 <S: Body>487
 488
 <idpp: Query> <!-- This is an ID-PP "Query" message bound -->489
 : <!-- into the <S: Body> of a SOAP message. -->490
 : 491
 </idpp: Query> 492
 493
 </S: Body>494
 495
 </S: Envelope> 496

Example 2. An Ordinary SOAP-bound ID-* Message497

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

19

498
 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"499
 xmlns: sb="..."500
 xmlns: pp="urn: liberty: id-sis-pp: 2003-08">501
 502
 <S: Header>503

504
 ...505

506
 <wsse: Security>507
 <wsu: Timestamp>508
 <wsu: Created>2005-06-17T04: 49: 18Z</wsu: Created>509
 </wsu: Timestamp>510
 </wsse: Security>511

512
 <wsa: MessageId>...</wsa: MessageId>513

514
 <wsa: RelatesTo>...</wsa: RelatesTo>515

516
 <wsa: To>...</wsa: To>517

518
 <wsa: Action>...</wsa: Action>519

520
 <!-- reference params from FaultTo/ReplyTo EndpointReference -->521

522
 <sbf: Framework version="2.0"/>523

524
 <sb: Sender providerID="..."/>525

526
 ...527
 528
 </S: Header>529
 530
 <S: Body>531

532
 <S: Fault>533
 <faultcode>S: server</faultcode>534
 <faultstring>Server Error</faultstring>535
 <!-- <S: faultactor> should be absent --> 536
 537
 <detail>538
 <lu: Status code="SomeStatus"539
 ref="Foo"540
 comment="Bar" />541
 </detail>542
 </S: Fault>543
 544
 </S: Body>545

546
 </S: Envelope>547
 548

Example 3. A SOAP-bound ID-* Fault Message549

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

20

5. Messaging-specific Header Blocks550

This section profiles the use of WS-Addressing SOAP Binding [WSAv1.0-SOAP] and WS-Security [wss-sms] header551
blocks, as well as defining several new ID-* header blocks, to implement the ID-* message exchange model.552

The messaging processing rules associated with the ID-* message exchange model are given in553
Section 5.11: Messaging Processing Rules.554

Additional ID-* header blocks and their processing rules are defined below in Section 6: Optional Header Blocks.555

Note556

Other ID-* specifications MAY define additional ID-* header blocks.557

5.1. The <wsu: Timestamp> element in the <wsse: Security> Header558

Block559

The <wsu: Timestamp> element and the <wsse: Security> header block are defined in [wss-sms]. When included560
in a message, the <wsu: Timestamp> element provides a means for the sender to specify the time at which the message561
was prepared for transmission and the time at which the message should expire.562

Note563

Depending on the security mechanisms in use [LibertySecMech], it may be necessary to include a <wsse:564
Security> header block solely for the purpose of including the <wsu: Timestamp> element.565

5.2. The <wsa: MessageID> Header Block566

The <wsa: MessageID> header block is defined in [WSAv1.0-SOAP]. The value of this header block uniquely iden-567
tifies the message that contains it.568

5.2.1. <wsa: MessageID> Value Requirements569

Values of the <wsa: MessageID> header block MUST satisfy the following property:570

Any party that assigns a value to a <wsa: MessageID> header block MUST ensure that there is571
negligible probability that that party or any other party will accidentally assign the same identifier572
to any other message.573

The mechanism by which SOAP-based ID-* senders or receivers ensure that an identifier is unique is left to imple-574
mentations. In the case that a pseudorandom technique is employed, the above requirement MAY be met by randomly575
chosing a value 160 bits in length.576

Note that [WSAv1.0] requires that <wsa: MessageID> values be absolute IRIs.577

5.3. The <wsa: RelatesTo> Header Block578

The <wsa: RelatesTo> header block is defined in [WSAv1.0-SOAP]. The value of this header block establishes a579
relationship between the message that contains it and some other message. The type of relationship is specified in the580
RelationshipType attribute.581

Note582

When the relationship is http://www.w3.org/2005/03/addressing/replyhttp: //www.w3.org/2005/03/address-583
ing/reply, the RelationshipType attribute may be omitted.584

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

21

http://www.w3.org/2005/03/addressing/reply

5.4. The <wsa: To> Header Block585

The <wsa: To> header block is defined in [WSAv1.0-SOAP]. The value of this header block specfies the intended586
destination of the message.587

Note588

In the typical case that a WS-Addressing endpoint reference is used to address a message, the value of this589
header block is taken from the <wsa: Address> of the endpoint reference. If the <wsa: To> header block is590
not present, the value defaults to http://www.w3.org/2005/03/addressing/role/anonymoushttp: //www.w3.org/591
2005/03/addressing/role/anonymous; so, when constructing a message, the header block can be omitted if this592
is the value that would be used. This typically allows the <wsa: To> <wsa: To> header block to be omitted593
in responses during synchronous request-response message exchanges over HTTP. Please refer to594
[WSAv1.0] for default processing rules in the absence of the <wsa: To> header block.595

5.5. The <wsa: Action> Header Block596

The <wsa: Action> header block is defined in [WSAv1.0-SOAP]. The value of this header block uniquely identifies597
the semantics implied by the message.598

The value of this header block SHOULD the same value as the SOAPAction HTTP header (see :).599

5.6. The <wsa: ReplyTo> Header Block600

The <wsa: ReplyTo> header block is defined in [WSAv1.0-SOAP]. The value of this header block, which is of the601
WS-Addressing endpoint reference type, specifies the address to which a reply should be sent.602

Note603

If the <wsa: ReplyTo> header block is not present, the value defaults to http://www.w3.org/2005/03/address-604
ing/role/anonymous; so, whenwill constructing a message, the header block can be omitted if this is the value605
that would be used. This typically allows the <wsa: ReplyTo> header block to be omitted duringsent. For606
synchronous request-response message exchanges over HTTP. Please refer to [WSAv1.0] for default pro-607
cessing rules inHTTP, the <wsa: Address> absence of the value <wsa: ReplyTo> MAY header block.608

5.7. The <wsa: FaultTo> Header Block609

The <wsa: FaultTo> header block is defined in [WSAv1.0-SOAP]. The value of this header block, which is of the610
WS-Addressing endpoint reference type, specifies the address to which a fault should be sent, if one should arise in611
the processing of the message. If not present, faults are sent to the replyaddress specified in the <wsa: ReplyTo> header612
block (if address.613

5.8. The <sbf: Framework> Header Block614

This section defines the <sbf: Framework> header block. When included in a message, this header provides a means615
for a sender to communicate the version of the ID-WSF framework used to construct the message.616

Framework versions are defined in ID-WSF SCR documents, such as [LibertyIDWSF20SCR].617

The schema fragment in Figure 3 defines the <sbf: Framework> header block.618

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

22

http://www.w3.org/2005/03/addressing/role/anonymous
http://www.w3.org/2005/03/addressing/role/anonymous
http://www.w3.org/2005/03/addressing/role/anonymous

619
 620
 <!-- framework header block -->621

622
 <xs: complexType name="FrameworkType">623
 <xs: sequence>624
 <xs: any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>625
 </xs: sequence>626
 <xs: attribute name="version" type="xs: string" use="required"/>627
 <xs: anyAttribute namespace="##other" processContents="lax"/>628
 </xs: complexType>629

630
 <xs: element name="Framework" type="FrameworkType"/>631

632
633

 634

Figure 3. The <sbf: Framework> Header Block Schema635

636
 <sbf: Framework version="2.0" S: mustUnderstand="1"637
 S: actor="http: //schemas.../next"638
 wsu: Id="A72139...381"/>639
 640

Example 4. An instantiated <sbf: Framework> header block641

5.9. The <Sender> Header Block642

This section defines the <Sender> header block. When included in a message, this header provides a means for a643
sender to claim that it is a provider identified by a given providerID value. The sender may also claim that it is a member644
of a given affiliation. Such claims are generally verifiable by receivers by looking up these values in the sender's645
metadata [LibertyMetadata].646

Note647

The providerID claim MAY be used by the receiver as a hint to locate metadata for use in verifying the security648
of the message (see [LibertyMetadata] and [LibertySecMech]). The mechanisms by which the receiver might649
locate or establish trust in a provider's metadata are not covered here.650

The receiver SHOULD ensure that the claims in the <Sender> header block are protected with adequate651
message security to bind them to the message sender (see [LibertySecMech]).652

The <Sender> header block defines the following attributes:653

• providerID [Required] -- The Provider ID of the sender.654

• affiliationID [Optional] -- The Affiliation ID of the sender, if any.655

The schema fragment in Figure 4 defines the <Sender> header block.656

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

23

657
 658
 <!-- sender header block -->659

660
 <xs: complexType name="SenderType">661
 <xs: attribute name="providerID" type="xs: anyURI" use="required"/>662
 <xs: attribute name="affiliationID" type="xs: anyURI" use="optional"/>663
 <xs: anyAttribute namespace="##other" processContents="lax"/>664
 </xs: complexType>665

666
 <xs: element name="Sender" type="SenderType"/>667

668
669

 670

Figure 4. The <Sender> Header Block Schema671

672
 <sb: Sender S: mustUnderstand="1"673
 S: actor="http: //schemas.../next"674
 wsu: Id="A72139...381"675
 providerID="http: //example.com"676
 affiliationID="http: //affiliation.com"/>677
 678

Example 5. An instantiated <Sender> header block679

5.10. The <TargetIdentity> Header Block680

This section defines the <TargetIdentity> header block. When included in a message, this header provides a means681
for the sender to include an identity token (see [LibertySecMech]) that specifies an identity at the service that is the682
target of the message. For example, to obtain profile attributes for a principal, a query message might be sent to a profile683
service associated with the principal, including an identity token in the target identity header that specifies the principal's684
identity at the profile service.685

Note686

If no <TargetIdentity> header block is present, then the invocation identity is typically used as the identity687
at the service that is the target of the message.688

The <TargetIdentity> header is typically only required in cross-principal scenarios such as when one user689
is accessing the resources of another user.690

The <TargetIdentity> header block has a content model of any.691

The schema fragment in Figure 5 defines the The <TargetIdentity> header block.692

693
 694
 <!-- target identity header block -->695

696
 <xs: complexType name="TargetIdentityType">697
 <xs: sequence>698
 <xs: any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>699
 </xs: sequence>700
 <xs: anyAttribute namespace="##other" processContents="lax"/>701
 </xs: complexType>702
 703
 <xs: element name="TargetIdentity" type="TargetIdentityType"/>704

705
706

 707

Figure 5. The <TargetIdentity> Header Block Schema708

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

24

709
 <sb: TargetIdentity S: mustUnderstand="1"710
 S: actor="http: //schemas.../next"711
 wsu: Id="A31739...293">712
 ...713
 </sb: TargetIdentity>714
 715

Example 6. An instantiated <TargetIdentity> header block716

5.11. Messaging Processing Rules717

Overall processing of SOAP-bound ID-* messages follows the rules of the SOAP processing model described in718
[SOAPv1.1]; specifically, the SOAP mustUnderstand and actor attributes MAY be used to mandate header block719
processing and target header blocks, respectively. Where applicable, specific processing rules for these attributes are720
given in the overall processing rules defined below.721

The system entity constructing and sending a SOAP-bound ID-* message is called the sender in the context of the act722
of sending the message. The entity receiving this message is called the receiver in the context of the act of receiving723
an individual message (see Section 2.2: Terminology).724

Two Message Exchange Patterns (MEPs) are supported: one-way, and request-response. One-way is simply where a725
sender sends a message to a receiver without necessarily expecting to receive an explicit response to the sent message.726
Request-response is where a sender sends a message to a receiver and expects to receive an explicit response.727

The processing rules are described below in terms of Constructing and Sending a SOAP-bound ID-* Message and728
Receiving and Processing a SOAP-bound ID-* Message . A sender instigating a one-way message exchange will729
perform only the steps outlined in the former section. A sender participating in a request-response message exchange730
will perform the steps in the former section when sending a message, and the steps in the latter section when receiving731
and processing the response. A receiver participating in a request-response exchange will do the reverse. Note that a732
receiver of an asynchronous one-way message will perform the steps in the latter section.733

Note734

The label "ID-* header block(s)" is used to refer to at least one of, or all of, the following set of header735
blocks:736

• <wsa: MessageID> [WSAv1.0]737

• <wsa: RelatesTo> [WSAv1.0]738

• <wsa: To> [WSAv1.0]739

• <wsa: Action> [WSAv1.0]740

• <wsa: ReplyTo> [WSAv1.0]741

• <wsa: FaultTo> [WSAv1.0]742

• <wsse: Security> [LibertySecMech]743

• <sbf: Framework>744

• <Sender>745

• <TargetIdentity>746

• <ProcessingContext>747

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

25

• <Consent>748

• <UsageDirective>749

• <EndpointUpdate>750

• <Timeout>751

• <CredentialsContext>752

• <ApplicationEPR>753

• <UserInteraction>754

Other specifications in the Liberty ID-* specification suite MAY define header block(s) not listed above.755
Nevertheless, they should generally be considered a member of the above list when interpreting the processing756
rules in this section, and explicitly considered where the processing rules refer to "ID-* header blocks" (see757
Section 2.2: Terminology).758

5.11.1. Constructing and Sending a SOAP-bound ID-* Message759

The sender MUST follow these processing rules when constructing and sending an outgoing SOAP-bound ID-* mes-760
sage (hereafter referred to as the outgoing message):761

1. The outgoing message MUST satisfy the rules given in Section 4: SOAP Binding.762

2. The outgoing message MUST satisfy the rules given in [WSAv1.0-SOAP].763

3. The outgoing message MUST include exactly one <wsa: MessageID> header block in the <S: Header> child764
element of the <S: Envelope> element and its value SHOULD be set according to the rules presented in Sec-765
tion 5.2.1: <wsa: MessageID> Value Requirements .766

4. If the sender is participating in a request-response MEP and is767

A. sending a request message, the outgoing message MUST include at mostexactly one <wsa: ReplyTo> header768
block and at most one <wsa: FaultTo> header block (if the <wsa: FaultTo> header block is not included,769
faults will be delivered to the reply <wsa: ReplyTo> endpoint)770

B. responding to a prior-received request message, the outgoing message MUST include exactly one <wsa:771
RelatesTo> header block with RelationshipType equal to http://www.w3.org/2005/03/addressing/re-772
plyhttp: //www.w3.org/2005/03/ addressing/reply in the <S: Header> child element of the <S:773
Envelope> element (note that this is the default RelationshipType and so the attribute MAY be omitted).774
The value of this header block MUST be set to the value of the <wsa: MessageID> header block from the775
prior-received message.776

5. The outgoing message MUST include exactly one <wsse: Security> header block. The <wsse: Security>777
header block MUST include a <wsu: Timestamp> element. The <wsu: Timestamp> element MUST include a778
<wsu: Created> element, the value of which SHOULD be set to the time at which the message is prepared for779
transmission. This value MUST conform to the rules presented in Section 2.5: Time Values.780

If no clock is available to the message sender then a time value of 1970-01-01T00: 00: 00Z SHOULD be used.781

6. The sender MUST include exactly one <sbf: Framework> header block in the <S: Header> child element of782
the <S: Envelope> element. The version attribute of this <sbf: Framework> header element MUST be set to783
ID-WSF version in use by the sender.784

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

26

http://www.w3.org/2005/03/addressing/reply
http://www.w3.org/2005/03/addressing/reply

7. If the sender is acting in the role of a Liberty provider, the message MUST include exactly one <Sender> header785
block in the <S: Header> child element of the <S: Envelope> element. The attributes of this <Sender> header786
block MUST be set as follows:787

A. providerID MUST be present and SHOULD be set to a value appropriate for the sender to claim [Liber-788
tyMetadata].789

B. affiliationID MAY be present. If so, it SHOULD be set to a value appropriate for the sender to claim790
[LibertyMetadata].791

8. The sender MAY include a <TargetIdentity> header block, as needed, to identify the target identity of the792
message. The sender MUST NOT include more than one <TargetIdentity> header block.793

9. The sender MAY include other ID-* header blocks in the message, in addition to those enumerated above, as794
required by the overall messaging and processing context. For example, the sender may include a <wsse:795
Security> header block [LibertySecMech].796

10. The sender adds either:797

A. an ordinary ID-* message (as described in Section 4.3: Ordinary ID-* Messages; see Example 2), or,798

B. an ID-* fault message (as prescribed in Section 4.4: ID-* Fault Messages; see Example 3),799

to the SOAP-bound ID-* message's <S: Body> element.800

11. The sender also performs any needed additional preparation of the message, for example including other header801
blocks, and signing some or all of the message elements, and then sends the message to the receiver. See Sec-802
tion 5.12: Examples .803

5.11.2. Receiving and Processing a SOAP-bound ID-* Message804

The receiver of a SOAP-bound ID-* message, either ordinary or fault, MUST perform the following processing steps805
on the ID-* header blocks of the incoming SOAP-bound ID-* message.806

Note807

Although the steps below are explicitly arranged and numbered sequentially, the intent is not to strictly define808
a specific overall processing algorithm in terms of having implementations follow these steps in exactly the809
same sequence on a per-header-block basis. However, all specified tests MUST be applied as appropriate to810
all ID-* header blocks in the incoming SOAP-bound ID-* message.811

1. The incoming message MUST satisfy the rules given in Section 4: SOAP Binding.812

2. The incoming message MUST satisfy the rules given in [WSAv1.0-SOAP].813

3. Processing specific to the <sbf: Framework> header block:814

A. A single <sbf: Framework> header block MUST be present in the header of the message.815

B. The value of the version attribute of the <sbf: Framework> header element MUST specify an ID-WSF816
version supported by the receiver. Further processing MUST be according to the processing rules of the817
specifieded version.818

C. If the foregoing test (3.A) holds true, processing continues with step 4 .819

D. Otherwise, the receiver MAY respond to the sender with a SOAP-bound ID-* Fault message (per Sec-820
tion 4.4) with the <faultcode> of sbf: FrameworkVersionMismatch.821

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

27

The receiver MAY discard the incoming message. The receiver is finished processing this incoming message822
at this point.823

4. Processing specific to the <wsa: MessageID> and <wsa: RelatesTo> header blocks and the <wsu:824
Timestamp> element in the <wsse: Security> header block:825

A. A single <wsse: Security> header block MUST be present in the header of the message. The826
<wsse: Security> header block MUST include a <wsu: Timestamp> element. The <wsu:827
Timestamp> element MUST include a <wsu: Created> element.828

B. The value of the <wsu: Created> element SHOULD be within an appropriate offset from local time829
expressed in UTC. Absent other guidance, a value of 5 minutes MAY be used.830

If the <wsu: Timestamp> element includes an <wsu: Expires> element, the time at the receiver MUST831
be before that time.832

Note833

Certain classes of client devices, such as consumer electronics, often do not have correctly set clocks.834
These processing rules may be relaxed for messages received from such devices.835

C. If the foregoing test (4.A) holds true, processing continues with step 5 .836

D. Otherwise, the receiver MAY respond to the sender with a SOAP-bound ID-* Fault message (per Sec-837
tion 4.4) with the <Status> element configured with:838

• a code attribute with a value of:839

• "IDStarMsgNotUnderstood" if the failed test is 4.A.840

• "StaleMsg" if the failed test is 4.B,841

• and a ref attribute with its value taken from the messageID value of the incoming message.842

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

28

The <S: Fault> SHOULD contain a <faultcode> of S: Client.843

The receiver MAY discard the incoming message. The receiver is finished processing this incoming message844
at this point.845

Note846

This specification does not include specific processing rules designed to ensure reliable message delivery847
or to prevent message replay. Services building on this specification should expect that clients may re-848
transmit messages for which no reply has been received.849

5. Processing specific to the <wsa: MessageID> and <wsa: RelatesTo> header blocks:850

A. A single <wsa: MessageID> header block MUST be present in the header of the message.851

B. If the <wsa: RelatesTo> header block with RelationshipType equal to http://www.w3.org/2005/03/ ad-852
dressing/replyhttp: //www.w3.org/2005/03/ addressing/reply is present, and if the receiver is participating in853
a request-response MEP with the sending party, then the value of the <wsa: RelatesTo> header block854
SHOULD match the value of the <wsa: MessageID> header block of a message previously sent by the855
receiver to the sender of the now incoming message.856

C. If the foregoing tests (5.A through 5.B) hold true, processing continues with step 6 .857

D. Otherwise, the receiver MAY respond to the sender with a SOAP-bound ID-* Fault message (per Sec-858
tion 4.4).) with the <Status> element configured with:859

a code attribute with a value of: "IDStarMsgNotUnderstood" if the failed test is . or .. "StaleMsg" if the failed860
test is ., "InvalidRefToMsgID" if the failed test is ., and a ref attribute with its value taken from the messageID861
value of the incoming message. The <S: Fault> SHOULD contain a <faultcode> of S: Client.862

The receiver MAY discard the incoming message. The receiver is finished processing this incoming message863
at this point.864

Note865

This specification does not include specific processing rules designed to ensure reliable message delivery866
or to prevent message replay. Services building on this specification should expect that clients may re-867
transmit messages for which no reply has been received.868

6. At this point, the receiver of the message MAY cease processing the message and indicate to the sender that the869
message should be re-submitted to a different endpoint, according to the rules specified in Section 6.4.5.1870

7. Processing specific to the <Sender> header block:871

A. Verify that any declared providerID or affiliationID, are valid. The receiver SHOULD perform this872
verification and validation against metadata (see [LibertyMetadata]).873

The declared providerID and affiliationID MUST NOT be used to establish a security context for further874
processing of the message on their own, but must be validated by an adequate security mechanism as specified875
in [LibertySecMech].876

B. If the foregoing test (7.A) holds true, processing continues with step 8.877

C. Otherwise, the receiver MAY respond to the sender with a SOAP-bound ID-* Fault message (per Sec-878
tion 4.4) with the <Status> element configured with:879

• a code attribute with a value of:880

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

29

http://www.w3.org/2005/03/%20addressing/reply
http://www.w3.org/2005/03/%20addressing/reply

• "ProviderIDNotValid", or,881

• "AffiliationIDNotValid", as appropriate (if both the claimed Provider ID and the Affiliation882
ID883
are deemed invalid, then the returned code SHOULD be "AffiliationIDNotValid"),884

• and a ref attribute with its value taken from the messageID value of the incoming message.885

The <S: Fault> SHOULD contain a <faultcode> of S: Client.886

The receiver MAY discard the incoming message. The receiver is finished processing this incoming message887
at this point.888

8. Processing specific to the <TargetIdentity> header block:889

A. Verify that any provided target identity token is valid (see [LibertySecMech]) and, if appropriate, that the890
identity specified by the token is known.891

B. If the foregoing test (8.A) holds true, processing continues with step 9.892

C. Otherwise, the receiver MAY respond to the sender with a SOAP-bound ID-* Fault message (per Sec-893
tion 4.4) with the <Status> element configured with:894

• a code attribute with a value of:895

• "TargetIdentityNotValid"896

• and a ref attribute with its value taken from the messageID value of the incoming message.897

The <S: Fault> SHOULD contain a <faultcode> of S: Client.898

The receiver MAY discard the incoming message. The receiver is finished processing this incoming message899
at this point.900

9. All remaining ID-* header blocks SHOULD be processed at this point. See appropriate sections in this and other901
specifications for the processing rules associated with these header blocks and the manner of reporting any issues902
with this processing. If there are no issues with these header blocks, then processing continues with step 10 below,903
otherwise the receiver is finished processing this incoming message at this point.904

Note905

It should be noted that the receiver MAY return an InappropriateCredentials based on their906
processing of the <wsse: Security> header block, under conditions specified below in Section 6.4 and907
Section 6.3, in addition to other conditions such as an expired credential (see [LibertySecMech]).908

10. If the incoming message's applicable header blocks have passed all specified and applicable tests, the incoming909
message SHOULD be dispatched for further processing as appropriate.910

If the message contained in the encompassing SOAP message's <S: Body> element is not dispatchable, the re-911
ceiver MAY respond to the sender with a SOAP-bound ID-* Fault message (per Section 4.4) with the912
<Status> element configured with:913

• a code attribute with a value of:914

• "IDStarMsgNotUnderstood"915

• and a ref attribute with its value taken from the messageID value of the incoming message.916

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

30

Receivers MUST be able to avoid ID-* fault message "loops." For example, if the incoming message is conveying917
an ID-* fault message, and there is some issue with one or more of its ID-* header blocks, the receiver should not918
issue a SOAP-bound ID-* Fault message in response.919

Note920

Other specifications conforming to this binding that specify ordinary ID-* messages and their processing,921
such as [LibertyIDPP] or [LibertyDisco], MAY define <Status> element code attribute values in addition to922
the ones defined in Section 3.3.1 of this document. These code attribute values SHOULD be used to signal923
to the sender any issues with the incoming ordinary ID-* message found by the receiver. This specification924
does not define any such conditions other than the one described above in 10, and they are not further discussed925
in this document.926

5.12. Examples927

Example 7 illustrates a SOAP-bound ID-* message conveying a Personal Profile (ID-PP) Modify request message928
[LibertyIDPP].929

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

31

930
 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"931
 xmlns: sbf="urn: liberty: sb"932
 xmlns: sb="urn: liberty: sb: 2006-08"933
 xmlns: idpp="urn: liberty: id-sis-pp: 2003-08">934
 935
 <S: Header>936

937
 ...938
 939
 <wsse: Security>940
 <wsu: Timestamp>941
 <wsu: Created>2005-06-17T04: 49: 17Z</wsu: Created>942
 </wsu: Timestamp>943
 </wsse: Security>944

945
 <wsa: MessageID>946
 http: //spwsc.com/0123456789abcdef0123456789abcdef01234567947
 </wsa: MessageID><wsa: MessageID>http: //spwsc.com/0123456789abcdef0123456789abcdef01234567</wsa: MessageID>948

949
 <wsa: To>http: //spwsp.com/idpp</wsa: To>950

951
 <wsa: Action>urn: liberty: id-sis-pp: 2003-08: Modify</wsa: Action>952

953
 <!-- reference params from target EndpointReference -->954

955
 <sbf: Framework version="2.0"/>956

957
 <sb: Sender providerID="http: //spwsc.com" affiliationID="http: //affiliation.com"/>958

959
 <wsa: ReplyTo>960
 <wsa: Address>http: //www.w3.org/2005/03/addressing/role/anonymous</wsa: Address>961
 </wsa: ReplyTo>962

963
 ...964
 965
 </S: Header>966
 967
 <S: Body>968
 969
 <idpp: Modify>970
 : <!-- this is an ID-PP Modify message -->971
 </idpp: Modify>972
 973
 </S: Body>974
 975
 </S: Envelope>976
 977

Example 7. A SOAP-bound ID-* Request Message978

Example 8 illustrates a SOAP-bound ID-* response to the message in the previous example, which conveyed an ID-979
PP Modify message. Note how the <wsa: RelatesTo> header value references the <wsa: MessageID> in the example980
above.981

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

32

 982
 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"983
 xmlns: sbf="urn: liberty: sb"984
 xmlns: sb="urn: liberty: sb: 2006-08"985
 xmlns: idpp="urn: liberty: id-sis-pp: 2003-08">986
 987
 <S: Header>988

989
 ...990
 991
 <wsse: Security>992
 <wsu: Timestamp>993
 <wsu: Created>2005-06-17T04: 49: 18Z</wsu: Created>994
 </wsu: Timestamp>995
 </wsse: Security>996

997
 <wsa: MessageID>998
 http: //spwsp.com/ffeeddccbbaa99887766554433221100ffeebbcc999
 </wsa: MessageID><wsa: MessageID>http: //spwsp.com/ffeeddccbbaa99887766554433221100ffeebbcc</wsa: MessageID>1000
 <wsa: RelatesTo>1001
 http: //spwsc.com/0123456789abcdef0123456789abcdef012345671002
 </wsa: RelatesTo><wsa: RelatesTo>http: //spwsc.com/0123456789abcdef0123456789abcdef01234567</wsa: RelatesTo>1003

1004
 <wsa: Action>urn: liberty: id-sis-pp: 2003-08: ModifyResponse</wsa: Action>1005

1006
 <sbf: Framework version="2.0"/>1007

1008
 <sb: Sender providerID="http: //spwsp.com" />1009

1010
 ...1011
 1012
 </S: Header>1013
 1014
 <S: Body>1015
 1016
 <idpp: ModifyResponse>1017
 : <!-- this is an ID-PP ModifyResponse message -->1018
 </idpp: ModifyResponse>1019

1020
 </S: Body>1021
 1022
 </S: Envelope>1023
 1024

Example 8. A SOAP-bound ID-* Response Message1025

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

33

6. Optional Header Blocks1026

The optional header blocks described in this specification are:1027

• <ProcessingContext>1028

• <Consent>1029

• <CredentialsContext>1030

• <EndpointUpdate>1031

• <Timeout>1032

• <UsageDirective>1033

• <ApplicationEPR>1034

• <UserInteraction>1035

The following sections describe these optional ID-* header blocks along with their specific processing rules.1036

Note1037

Whenever an optional header block appears in a SOAP-bound ID-* message, the processing rules specific to1038
that header block (which are given in this section, below) MUST be used in combination with the messaging1039
processing rules given above in Section 5.11: Messaging Processing Rules. This applies whether the message1040
is being constructed and sent, or being received and processed.1041

6.1. The <ProcessingContext> Header Block1042

This section defines the <ProcessingContext> header block. This header block may be employed by a sender to1043
signal to a receiver that the latter should add a specific additional facet to the overall processing context in which any1044
action(s) are invoked as a result of processing any ID-* message also conveyed in the overall SOAP-bound ID-*1045
message. The full semantics of this header block are described below in Section 6.1.2: <ProcessingContext>1046
Header Block Semantics and Processing Rules .1047

Processing context facets are denoted by URIs. URIs are assigned to denote specific processing context facets. This1048
specification defines several such URIs below in Section 6.1.2.2.1049

6.1.1. The <ProcessingContext> Type and Element1050

The <ProcessingContext> content model is anyURI.1051

The schema fragment in Figure 6 defines the <ProcessingContext> header block.1052

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

34

1053
 1054
 <!-- processing context header block -->1055

1056
 <xs: complexType name="ProcessingContextType">1057
 <xs: simpleContent>1058
 <xs: extension base="xs: anyURI">1059
 <xs: anyAttribute namespace="##other" processContents="lax"/>1060
 </xs: extension>1061
 </xs: simpleContent>1062
 </xs: complexType>1063

1064
 <xs: element name="ProcessingContext" type="ProcessingContextType"/>1065

1066
 1067

Figure 6. The <ProcessingContext> Header Block Schema1068

1069
 <sb: ProcessingContext S: mustUnderstand="1">1070
 urn: liberty: sb: 2003-08: ProcessingContext: PrincipalOffline1071
 </sb: ProcessingContext>1072
 1073

Example 9. An instantiated <ProcessingContext> header block1074

6.1.2. <ProcessingContext> Header Block Semantics and Processing Rules1075

This section first describes the overall semantics of the <ProcessingContext> header block, then defines two1076
processing context facet URIs, and concludes with defining specific processing rules.1077

6.1.2.1. <ProcessingContext> Header Block Semantics1078

The overall semantic of the <ProcessingContext> header block is:1079

The <ProcessingContext> header block MAY be employed by a sender, who is acting in a web1080
services client (WSC) role, to signal to a receiver, who is acting in a web services provider (WSP)1081
role, that the latter should add a specific processing context facet to the overall processing context1082
(see Section 2.2: Terminology) in which the service request is evaluated.1083

The specific processing context facet being conveyed by the <ProcessingContext> header block is identified by1084
the header block's URI element value.1085

Such URIs are known as processing context facet URIs. An example of a processing context facet that may be signaled1086
by such a URI is whether the principal should be considered to be online or not.1087

An ID-WSF or ID-SIS WSP receiving a service request containing a <ProcessingContext> header block with one1088
of the above processing context facet URIs SHOULD process the conveyed ID-* message with the indicated pro-1089
cessing context facet in force. Thus the ID-* message's processing as well as any applicable access management1090
policies are exercised within an overall processing context which includes the processing context facet. Finally, an1091
indication of success or failure of the ID-* message processing is returned to the sender, in the same manner as would1092
be done if the ID-* message had been sent without the attendant <ProcessingContext> header block.1093

The above completely describes the semantic of this header block itself, and further description of particular effects1094
on processing must be made in descriptions of processing context facet URIs. Such a description is given in the next1095
section.1096

Note1097

Whether or not a receiver honors a <ProcessingContext> header block is a matter of local policy at the1098
receiver, as is whether or not a receiver honors any given request from any given sender. For example, the1099

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

35

<ProcessingContext> header block functionality has security implications in the sense of possibly facil-1100
itating an adversary to probe a receiver's behavior given adversary-chosen inputs. For these reasons, whether1101
or not the <ProcessingContext> header block functionality is enabled on the part of a receiver with respect1102
to a particular sender should be a matter of business-level agreement between the receiver and the sender.1103

6.1.2.2. Processing Context Facet URIs: PrincipalOnline, PrincipalOffline, and Simulate1104

Three processing context facet URIs are defined below for use with the <ProcessingContext> header block:1105

urn: liberty: sb: 2003-08: ProcessingContext: PrincipalOffline1106
Conduct the processing of the ID-* message as if the Principal is offline.1107

urn: liberty: sb: 2003-08: ProcessingContext: PrincipalOnline1108
Conduct the processing of the ID-* message as if the Principal is online.1109

urn: liberty: sb: 2003-08: ProcessingContext: Simulate1110
Simulate the processing of the ID-* message.1111

If the sender includes a <UserInteraction> header block in addition to the <ProcessingContext> header block1112
in the SOAP-bound ID-* request message, the receiver and sender MUST appropriately initiate the indicated user1113
interaction, and incorporate information supplied by the user as a part of the resultant user interaction, into the appro-1114
priate data and/or policy stores.1115

Note1116

Any processing context facet that was conveyed in the <ProcessingContext> header block MUST NOT1117
be enforced during such a user interaction. Rather, it applies only to the processing of the ID-* message itself.1118

In summary, the overall intended side-effect of using the above-defined processing context facets is for the receiver to1119
evaluate applicable policy, and return a putative indication of success or failure to the sender. This provides WSCs the1120
capability to make an ID-WSF or ID-SIS service request and ascertain whether it will be successful or not--without1121
the service request actually being carried out. Additionally, it facilitates carrying out any user interaction that may be1122
indicated by the current combination of service request context and applicable policy. This will, for example, facilitate1123
some WSCs to fashion more "user friendly" experiences.1124

6.1.2.3. Defining New Processing Context Facet URIs1125

The rightmost portions of the processing context facet URIs after the "ProcessingContext: " component are referred to1126
as processing context facet identifiers. For example, whether the Principal is online or not is a facet of a request context.1127
New processing context facet identifiers MAY be defined in other specifications, for example in ID-SIS data service1128
specifications. An ID-SIS data service may define as many levels of request context identifiers as necessary to address1129
the application's needs.1130

6.1.2.4. Sender Processing Rules1131

A sender MAY include a <ProcessingContext> header block in a SOAP-bound ID-* message. The sender MUST1132
include a processing context facet URI in the <ProcessingContext> header block. The sender then sends the ID-*1133
SOAP-bound message to an ID-WSF or ID-SIS service-hosting node (AKA the receiver).1134

A sender MAY indicate that it believes either that the Principal is currently "online" or "offline" when it sends a message1135
by specifying one of the two processing context facet URIs:1136

• urn: liberty: sb: 2003-08: ProcessingContext: PrincipalOnline1137

• urn: liberty: sb: 2003-08: ProcessingContext: PrincipalOffline1138

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

36

The sender will typically receive a response from the receiver indicating success or failure or will receive a SOAP fault1139
indicating a processing error with the SOAP-bound ID-* message. Note that in the case of a "successful" request1140
simulation, the service will not return any result data other than an indication of success or failure to the sender.1141

6.1.2.5. Receiver Processing Rules1142

The receiver of a request containing a <ProcessingContext> header block MUST examine the included processing1143
context facet URI. If it is known to the data service, then the data service MUST attempt to process the data service1144
request, represented by the ID-* message, in an overall processing context including the processing context facet as1145
indicated by the conveyed processing context facet URI, and return an indication of success or failure to the sender.1146

If the data service request is malformed or has some other issue that would normally cause the receiver to issue a SOAP1147
fault, the receiver SHOULD do so.1148

If the receiver is asked to simulate processing of the request (by the inclusion of the1149
urn: liberty: sb: 2003-08: ProcessingContext: Simulate facet URI), and they are both able and willing to1150
honor that processing context, then the receiver MUST evaluate the conveyed ID-* message, but MUST NOT actually1151
perform the operation. That is, the receiver MUST NOT make actual changes to underlying ID-* service datastore,1152
and it MUST NOT return any data as a result of evaluating the ID-* message.1153

If the sender includes a <UserInteraction> header block, in addition to the <ProcessingContext> header block,1154
then both participants MUST initiate the indicated user interaction appropriately, and incorporate information supplied1155
by the user as a part of the interaction into appropriate data and/or policy stores, even if the urn: liberty: sb:1156
2003-08: ProcessingContext: Simulate URI is specified in a <ProcessingContext> header.1157

In the event the receiver does not understand the included processing context facet URI, the receiver MAY respond1158
with a SOAP-bound ID-* fault message (per Section 4.4: ID-* Fault Messages) with the <Status> element configured1159
with:1160

• a code attribute with a value of:1161

• "ProcCtxURINotUnderstood"1162

• and a ref attribute with its value taken from the messageID value of the incoming message.1163

In the event the receiver is not willing to enforce a stipulated processing context, the receiver MAY respond with a1164
SOAP-bound ID-* fault message (per Section 4.4: ID-* Fault Messages) with the <Status> element configured1165
with:1166

• a code attribute with a value of:1167

• "ProcCtxUnwilling"1168

• and a ref attribute with its value taken from the messageID value of the incoming message.1169

Note1170

The receiver MAY reference multiple <ProcessingContext> headers in the <detail> of the fault response1171
(in accordance with the rules specified in Section 4.4).1172

6.2. The <Consent> Header Block1173

This section defines the <Consent> header block. This header block is used to explicitly claim that the Principal1174
consented to the present interaction.1175

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

37

6.2.1. The <Consent> Type and Element1176

The <Consent> header block element MAY be employed by either a sender or a receiver. For example, the Principal1177
may be using a Liberty-enabled client or proxy (common in the wireless world), and in that sort of environment the1178
mobile operator may cause the Principal's terminal (AKA: cell phone) to prompt the principal for consent for some1179
interaction.1180

The <Consent> header block has the following attributes:1181

• uri [Required] -- A URI indicating that the Principal's consent was obtained.1182

Optionally, the URI MAY identify a particular Consent Agreement Statement defining the specific nature of the1183
consent obtained.1184

This specification defines one well-known URI Liberty implementors and deployers MAY use to indicate positive1185
Principal consent was obtained with respect to whatever ID-* interaction is underway or being initiated. This URI1186
is known as the "Principal Consent Obtained" URI (PCO). The value of this URI is:1187

urn: liberty: consent: obtained1188

This URI does not correspond to any particular Consent Agreement Statement. Rather, it simply states that consent1189
was obtained. The full meaning and implication of this will need to be derived from the execution context.1190

• timestamp [Optional] -- For denoting the time at which the sender obtained Principal consent with the POC.1191

The schema fragment in Figure 7 defines the Consent header block type.1192

1193
 1194
 <!-- consent header block -->1195

1196
 <xs: complexType name="ConsentType">1197
 <xs: attribute name="uri" type="xs: anyURI" use="required"/>1198
 <xs: attribute name="timestamp" type="xs: dateTime" use="optional"/>1199
 <xs: anyAttribute namespace="##other" processContents="lax"/>1200
 </xs: complexType>1201

1202
 <xs: element name="Consent" type="ConsentType"/>1203

1204
 1205

Figure 7. The <Consent> Header Block Schema1206

1207
 <sb: Consent1208
 uri="urn: liberty: consent: obtained"1209
 timestamp="2112-03-15T11: 12: 10Z"/>1210
 1211

Example 10. An instantiated <Consent> header block1212

6.3. The <CredentialsContext> Header Block1213

6.3.1. Overview1214

It may be necessary for an entity receiving an ID-* message to indicate the type of credentials that should be used by1215
the sender in submitting a message.1216

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

38

6.3.2. CredentialsContext Type and Element1217

Receivers of an ID-* message MAY add <CredentialsContext> elements to the SOAP header of their response.1218

The element is based upon the CredentialsContextType which is defined as:1219

• samlp: RequestedAuthnContext [Optional] -- a container that allows the expression of a requested authenti-1220
cation context (see [SAMLCore2]).1221

• SecurityMechID [Optional] -- A set of elements that specify ID-WSF security mechanism URIs (see [Liberty-1222
SecMech]).1223

The following schema fragment describes the <CredentialsContext> header block.1224

1225
 1226
 <!-- credentials context header block -->1227

1228
 <xs: complexType name="CredentialsContextType">1229
 <xs: sequence>1230
 <xs: element ref="samlp: RequestedAuthnContext" minOccurs="0"/>1231
 <xs: element name="SecurityMechID" type="xs: anyURI" minOccurs="0" maxOccurs="unbounded"/>1232
 </xs: sequence>1233
 <xs: anyAttribute namespace="##other" processContents="lax"/>1234
 </xs: complexType>1235

1236
 <xs: element name="CredentialsContext" type="CredentialsContextType"/>1237

1238
1239

 1240

Figure 8. The <CredentialsContext> Header Block Schema1241

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

39

6.3.3. CredentialsContext Example1242

 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"1243
 xmlns: sb="urn: liberty: sb: 2006-08"1244
 xmlns: lib="urn: liberty: iff: 2003-08">1245

1246
 <S: Header>1247
 ...1248
 <!-- Says that the sender would like credentials that include RequestAuthnContext1249
 as specified -->1250

1251
 <sb: CredentialsContext mustUnderstand="1">1252

1253
 <samlp: RequestedAuthnContext>1254
 ...1255
 </samlp: RequestedAuthnContext>1256

1257
 </sb: CredentialsContext>1258
 ...1259
 </S: Header>1260

1261
 <S: Body> 1262

1263
 <!-- a fault in the body indicates that the WSP's policy requires 1264
 different (perhaps "stronger") credentials than were originally 1265
 provided in the request -->1266

1267
 <S: Fault>1268
 <faultcode>S: Server</faultcode>1269
 <faultstring>1270
 Your request contained inappropriate credentials.1271
 </faultstring>1272
 <detail>1273
 <lu: Status code="InappropriateCredentials"/>1274
 <wsse: Security id="a6352...564"/>1275
 </detail>1276
 </S: Fault>1277
 </S: Body>1278

1279
 </S: Envelope> 1280

Example 11. A CredentialsContext Header Offered in Response to a Request with Inappropriate Credentials.1281

6.3.4. Processing Rules1282

6.3.4.1. Sender Processing Rules1283

A sender including this header MUST specify at least one RequestAuthnContext or one SecurityMechID.1284

The SecurityMechID elements SHOULD be listed in order of preference by the sender.1285

6.3.4.2. Receiver Processing Rules1286

The receiver of a <CredentialsContext> header containing one or more SecurityMechID elements SHOULD1287
use the highest-listed (first) SecurityMechID that it supports in future requests to the sender of this header.1288

The receiver of a <CredentialsContext> header containing a RequestAuthnContext element SHOULD use1289
credentials that conform to the policies specified therein in any future requests to the sender of this header (where1290
credentials are required).1291

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

40

6.4. The <EndpointUpdate> Header Block1292

6.4.1. Overview1293

It may be necessary for an entity receiving an ID-* message to indicate that messages from the sender should be directed1294
to a different endpoint, or that they wish a different credential to be used than was originally specified by the entity for1295
access to the requested resource. The <EndpointUpdate> response header allows a message receiver to indicate that1296
a new endpoint or new credentials should be employed by the sender of the message on any subsequent messages. This1297
header block may be used in conjunction with the <sb: InappropriateCredentials> and <sb:1298
EndpointUpdated> faults, to indicate that the current message processing failed for those reasons, and should be1299
submitted with the changes noted in any accompanying <EndpointUpdate> header block.1300

Note1301

The use of this header block allows the sender of the message to convey updates to security tokens, essentially1302
providing a token renewal mechanism. This is not discussed further in this specification.1303

6.4.2. EndpointUpdate Type and Element1304

Receivers of an ID-* message may add an <EndpointUpdate> element to the SOAP header of their response.1305

This element is based upon the EndpointUpdateType which is an extension of wsa: EndpointReferenceType1306
that adds the following attributes:1307

• updateType [Optional] -- A URI attribute indicating whether the update should be interpreted as completely1308
superseding the endpoint reference used to send the current request (the default) or whether it should be interpreted1309
as a partial updated.1310

urn: liberty: sb: 2006-08: EndpointUpdate: Complete1311
A complete update.1312

urn: liberty: sb: 2006-08: EndpointUpdate: Partial1313
A partial update. The complete updated endpoint reference is contructed according to the1314
processing rules below.1315

The following schema fragment describes the <EndpointUpdate> header block.1316

1317
 1318
 <!-- epr update header block -->1319

1320
 <xs: complexType name="EndpointUpdateType">1321
 <xs: complexContent>1322
 <xs: extension base="wsa: EndpointReferenceType">1323
 <xs: attribute name="updateType" type="xs: anyURI" use="optional"/>1324
 </xs: extension>1325
 </xs: complexContent>1326
 </xs: complexType>1327
 1328
 <xs: element name="EndpointUpdate" type="EndpointUpdateType"/>1329

1330
1331

 1332

Figure 9. The <EndpointUpdate> Header Block Schema1333

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

41

6.4.3. EndpointUpdate Examples1334

1335
1336

 1. Service responds to a request, indicating a new security mechanism and credential1337
1338

 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"1339
 xmlns: sb="urn: liberty: sb: 2006-08"1340
 xmlns: idpp="urn: liberty: id-sis-pp: 2003-08">1341

1342
 <S: Header>1343

1344
 ...1345

1346
 <sb: EndpointUpdate mustUnderstand="1" updateType="urn: liberty: sb: 2004-04: Partial">1347
 <wsa: Address>urn: liberty: sb: 2006-08: EndpointUpdate: NoChange</wsa: Address>1348
 <wsa: Metadata>1349
 <ds: SecurityContext>1350
 <ds: SecurityMechID>urn: liberty: security: 2005-02: TLS: Bearer</sb: SecurityMechID>1351
 <wsse: SecurityTokenReference>1352
 <wsse: Embedded>1353
 <wsse: BinarySecurityToken xmlns: wsse="..." wsu: Id="..." 1354
 ValueType="anyNSprefix: ServiceSessionContext">1355
 ZjgzOWZlNzgyZTk1ZWU3OWEyMTRlODVmNGZkYzE4MmQ2ZDNhMzc3Nwo=1356
 </wsse: BinarySecurityToken>1357
 </wsse: Embedded>1358
 </wsse: SecurityTokenReference>1359
 </ds: SecurityContext>1360
 </wsa: Metadata>1361
 </sb: EndpointUpdate>1362

1363
 ...1364

1365
 </S: Header>1366

1367
 <S: Body> 1368

1369
 <idpp: QueryResponse>1370
 ...1371
 </idpp: QueryResponse>1372

1373
 </S: Body>1374

1375
 </S: Envelope> 1376

1377
1378

 2. The client sends a new request, using the contents of the EndpointUpdate1379
1380

 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"1381
 xmlns: idpp="urn: liberty: id-sis-pp: 2003-08">1382

1383
 <S: Header>1384

1385
 ...1386

1387
 <wsse: Security xmlns: wsse="...">1388

1389
 <wsse: BinarySecurityToken xmlns: wsse="..." wsu: Id="bst" 1390
 ValueType="anyNSprefix: ServiceSessionContext">1391
 ZjgzOWZlNzgyZTk1ZWU3OWEyMTRlODVmNGZkYzE4MmQ2ZDNhMzc3Nwo=1392
 </wsse: BinarySecurityToken>1393

1394
 </wsse: Security>1395

1396
 ...1397

1398
 </S: Header>1399

1400
 <S: Body> 1401

1402
 <idpp: Query>1403
 ...1404
 </idpp: Query>1405

1406
 </S: Body>1407

1408
 </S: Envelope>1409
 1410

Example 12. An EndpointUpdate Specifying a ServiceSessionContext Token, and the TLS Bearer Security Mechanism.1411

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

42

1412
 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"1413
 xmlns: sb="urn: liberty: sb: 2006-08">1414

1415
 <S: Header>1416

1417
 ...1418

1419
 <sb: EndpointUpdate mustUnderstand="1" updateType="urn: liberty: sb: 2004-04: Partial">1420
 <wsa: Address>http: //example.com: 443/soap</wsa: Address>1421
 </sb: EndpointUpdate>1422

1423
 ...1424

1425
 </S: Header>1426

1427
 <S: Body> 1428

1429
 <!-- a fault in the body indicates that the request corresponding 1430
 to this response should be re-submitted to the endpoint -->1431
 1432
 <S: Fault>1433

1434
 <faultcode>S: Server</faultcode>1435

1436
 <faultstring>1437
 You must resubmit this request to the new endpoint.1438
 </faultstring>1439

1440
 <detail>1441
 <lu: Status code="EndpointUpdated"/>1442
 </detail>1443

1444
 </S: Fault>1445

1446
 </S: Body>1447
 1448
 </S: Envelope>1449
 1450

Example 13. An EndpointUpdate Specifying an Updated Address.1451

6.4.4. Processing Rules for the EndpointUpdate header1452

6.4.4.1. Sender Processing Rules1453

The receiver of an ID-* message MAY add an <EndpointUpdate> header block to their response.1454

If updateType is not present or has the value urn: liberty: sb: 2006-08: EndpointUpdate: Complete, the1455
<wsa: EndpointUpdate> MUST be a completely specified endpoint reference.1456

If updateType has the value urn: liberty: sb: 2006-08: EndpointUpdate: Partial, the <wsa:1457
EndpointUpdate> MAY omit any direct children of <wsa: RefenceParameters> or <wsa: Metadata> that have1458
not changed from the original endpoint reference used to send the current request. Similarly, any extension elements1459
that have not changed MAY be omitted. If the address has not changed, then the URI1460

urn: liberty: sb: 2006-08: EndpointUpdate: NoChange1461

MAY be used in the <wsa: Address> value to indicate that the original address should continue to be used.1462

Note1463

The expressiveness of partial updates is limited. In particular, updates to <wsa: ReferenceParameters>1464
and <wsa: Metadata> are done based on the qualified names of the direct children of those containers. If1465

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

43

any child with a matching name is provided in the update, then all children with that name in the original are1466
replaced. It is also impossible, with a partial update, to remove an element; elements may only be added or1467
replaced.1468

6.4.4.2. Receiver Processing Rules1469

The receiver of an <EndpointUpdate> header SHOULD use the specified endpoint reference values to address any1470
future requests to the sender of the header (where the endpoint reference used to address the request that resulted in1471
the response containing the header would have been used), until newer information is obtained through this or some1472
other mechanism or the updated information expires. If the updated information has a shorter lifetime than the current1473
information (that it updates), then the current information SHOULD be retained as a fallback for when the updated1474
information expires.1475

If updateType is not present or has the value urn: liberty: sb: 2006-08: EndpointUpdate: Complete, the1476
<wsa: EndpointUpdate> is a completely specified endpoint reference.1477

If updateType has the value urn: liberty: sb: 2006-08: EndpointUpdate: Partial, the <wsa:1478
EndpointUpdate> is a partially specified endpoint reference. The following steps are used to construct a complete1479
endpoint reference from the endpoint reference that was used to address the request that resulted in the response1480
containing this header:1481

1. Take the <wsa: Address> from the <wsa: EndpointUpdate>. If the value is urn: liberty: sb: 2006-08:1482
EndpointUpdate: NoChange, then take the <wsa: Address> from the original endpoint reference.1483

2. Take the <wsa: ReferenceParameters> from the <wsa: EndpointUpdate>, if present. Then, if <wsa:1484
ReferenceParameters> is present in the orginal endpoint reference, take each direct child from that element1485
that does not match an element already taken from the update (comparing the namespace qualified names of the1486
elements).1487

3. Take the <wsa: Metadata> from the <wsa: EndpointUpdate>, if present. Then, if <wsa: Metadata> is1488
present in the orginal endpoint reference, take each direct child from that element that does not match an element1489
already taken from the update (comparing the namespace qualified names of the elements).1490

4. Take any extension elements from the <wsa: EndpointUpdate>, if present. Then, if any extension elements are1491
present in the orginal endpoint reference, take each one that does not match an element already taken from the1492
update (comparing the namespace qualified names of the elements).1493

6.4.5. Processing Rules for the EndpointUpdated SOAP Fault1494

6.4.5.1. Sender Processing Rules1495

The receiver of an ID-* message MAY issue a SOAP Fault indicating that the endpoint to which this message was1496
submitted has permanently changed.1497

Once the receiver has sent this fault response, no further processing of the message should take place.1498

If the receiver chooses to send the fault response, then it SHOULD also include an <EndpointUpdate> header,1499
indicating the new endpoint which should be used to re-submit this message, and any further messages directed to the1500
responding service.1501

6.4.5.2. Receiver Processing Rules1502

If the receiver of this fault response also received an <EndpointUpdate> header in the response, it MAY re-submit1503
the failed request to any endpoint specified in that header, but it SHOULD provide a different <wsa: MessageID>1504
header block value in the request.1505

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

44

6.5. The <Timeout> Header Block1506

6.5.1. Overview1507

A requesting entity may wish to indicate that they would like a request to be processed within some specified amount1508
of time. Such an entity would indicate their wish via the <Timeout> header block.1509

6.5.2. Timeout Type and Element1510

Senders of ID-* messages MAY add a <Timeout> element to the SOAP header of their request.1511

This element is based upon the TimeoutType which is defined as:1512

• maxProcessingTime [Required] -- an integer specifying (in seconds) the maximum amount of time the sender1513
wishes the receiver to spend in processing their request1514

The following schema fragment describes the <Timeout> header block.1515

1516
 1517
 <!-- timeout header block -->1518

1519
 <xs: complexType name="TimeoutType">1520
 <xs: attribute name="maxProcessingTime" type="xs: integer" use="required"/>1521
 <xs: anyAttribute namespace="##other" processContents="lax"/>1522
 </xs: complexType>1523
 1524
 <xs: element name="Timeout" type="TimeoutType"/>1525

1526
1527

 1528

Figure 10. The <Timeout> Header Block Schema1529

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

45

6.5.3. Timeout Example1530

1531
 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"1532
 xmlns: sb="urn: liberty: sb: 2006-08"1533
 xmlns: idpp="urn: liberty: id-sis-pp: 2003-08">1534
 1535
 <S: Header>1536

1537
 ...1538

1539
 <sb: Timeout mustUnderstand="1" wsu: Id="timeout.123"1540
 maxProcessingTime="7"/>1541

1542
 ...1543

1544
 </S: Header>1545
 1546
 <S: Body> 1547

1548
 <idpp: Query>1549
 ...1550
 </idpp: Query>1551

1552
 </S: Body>1553
 1554
 </S: Envelope>1555
 1556

Example 14. Example of a Request with Timeout Specified1557

1558
 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"1559
 xmlns: sb="urn: liberty: sb: 2006-08">1560

1561
 <S: Header>1562

1563
 ...1564

1565
 </S: Header>1566
 1567
 <S: Body> 1568

1569
 <S: Fault>1570

1571
 <faultcode>1572
 S: Server1573
 </faultcode>1574

1575
 <detail>1576

1577
 <lu: Status code="ProcessingTimeout"/>1578
 1579
 <!-- Reference the specified Timeout header, if it was supplied1580
 by the sender -->1581

1582
 <sb: Timeout wsu: Id="timeout.123"/>1583

1584
 </detail>1585
 </S: Fault>1586

1587
 </S: Body>1588
 1589
 </S: Envelope>1590
 1591

Example 15. Example of a Timed-out Response1592

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

46

6.5.4. Processing Rules1593

6.5.4.1. Receiver Processing Rules1594

The receiver of a <Timeout> header SHOULD NOT begin processing of a message (beyond processing of the SOAP1595
headers as noted in this specification) if it expects that such processing would exceed the value specified in the max-1596
ProcessingTime attribute.1597

The receiver MUST respond to the message within the number of seconds specified in the maxProcessingTime attribute.1598

If the receiver is unable to complete processing within the number of seconds specified in the maxProcessingTime1599
attribute of the <Timeout> header, then they MUST respond with a SOAP Fault with a code of1600
ProcessingTimeout.1601

Note1602

If the sender of a message does not include a <Timeout> header, but the receiver wishes to indicate to the1603
sender that server processing failed due to a timeout, then the receiver MAY respond with a SOAP Fault with1604
a code of ProcessingTimeout.1605

6.6. The <UsageDirective> Header Block1606

This section defines the ID-* usage directive facilities.1607

6.6.1. Overview1608

Participants in the ID-WSF framework may need to indicate the privacy policy associated with a message. To facilitate1609
this, senders, acting as either a client or a server, may add one or more <UsageDirective> header blocks to the SOAP1610
Header of the message being sent. A <UsageDirective> appearing in a SOAP-based ID-* request message expresses1611
intended usage. A <UsageDirective> appearing in a response expresses how the receiver of the response is to use1612
the response data. A <UsageDirective> in a response message containing no ID-WSF response message data, a1613
fault response for example, may be used to express policies acceptable to the responder.1614

6.6.2. UsageDirective Type and Element1615

Senders MAY add a <UsageDirective> element to the SOAP header. This element is based upon the1616
UsageDirectiveType which is defined as:1617

• ref [Required] -- An attribute referring to an element of the SOAP-based ID-* message to which the usage directive1618
applies.1619

• <element>(s) [Optional] -- Elements, comprising an instance of some policy expression language, whose purpose1620
is to express the actual policy the usage directive is conveying. The ref attribute above points at the element in1621
the overall SOAP-based ID-* message to which the usage directive applies.1622

The schema fragment in Figure 11 defines the <UsageDirective> header type and element.1623

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

47

1624
 1625
 <!-- usage directive header block -->1626

1627
 <xs: complexType name="UsageDirectiveType">1628
 <xs: sequence>1629
 <xs: any namespace="##other" processContents="lax" 1630
 maxOccurs="unbounded"/>1631
 </xs: sequence>1632
 <xs: attribute name="ref" type="xs: IDREF" use="required"/>1633
 <xs: anyAttribute namespace="##other" processContents="lax"/>1634
 </xs: complexType>1635

1636
 <xs: element name="UsageDirective" type="UsageDirectiveType"/>1637

1638
 1639

Figure 11. The <UsageDirective> Header Block Schema1640

6.6.3. Usage Directive Examples1641

Example 16 illustrates a SOAP-based ID-* message, containing a <UsageDirective> header block, and conveying1642
a Personal Profile (ID-PP) Modify message [LibertyIDPP]. The <UsageDirective> header block contains a usage1643
directive expressed in a policy language identified by the cot: namespace and the URI http://cot.example.com/poli-1644
cies/eu-complianthttp: //cot.example.com/policies/eu-compliant , and applying to the ID-PP Query message identified1645
by the id of datarequest001.1646

 1647
 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/"1648
 xmlns: sb="urn: liberty: sb: 2006-08"1649
 xmlns: pp="urn: liberty: id-sis-pp: 2003-08">1650
 1651
 <S: Header>1652

1653
 ...1654
 1655
 <sb: UsageDirective S: mustUnderstand="1"1656
 ref="#datarequest001">1657
 1658
 <cot: PrivacyPolicyReference 1659
 xmlns: cot="http: //cot.example.com/isf">1660
 http: //cot.example.com/policies/eu-compliant1661
 </cot: PrivacyPolicyReference>1662
 1663
 </sb: UsageDirective>1664

1665
 ...1666
 1667
 </S: Header>1668
 1669
 <S: Body>1670
 1671
 <pp: Query id="datarequest001" xmlns: pp="urn: liberty: id-sis-pp: 2003-08">1672
 <pp: ResourceID>data: d8ddw6dd7m28v628</pp: ResourceID>1673
 <pp: QueryItem>1674
 <pp: Select>/pp: IDPP/pp: IDPPAddressCard</pp: Select>1675
 </pp: QueryItem>1676
 </pp: Query> 1677
 1678
 </S: Body>1679
 1680
 </S: Envelope>1681
 1682

Example 16. A Usage Directive on a Request for the Address of a Principal.1683

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

48

http://cot.example.com/policies/eu-compliant
http://cot.example.com/policies/eu-compliant

6.6.4. Processing Rules1684

6.6.4.1. Sender Processing Rules1685

The sender of a SOAP-based ID-* message with a <UsageDirective> header block MUST ensure that the value of1686
the ref attribute is set to the value of the id of the appropriate element in the message. The sender SHOULD ensure1687
that the <UsageDirective> is integrity-protected. The protection mechanism, if utilized, SHOULD be in accordance1688
with those defined in [LibertySecMech].1689

6.6.4.2. Receiver Processing Rules1690

A receiver of a SOAP-based ID-* message with an attached <UsageDirective> header block MUST check the1691
actor attribute and determine if it, the receiver, is the actor the header block is targeted at. If so, the receiver MUST1692
check the mustUnderstand attribute. If set to TRUE the receiver MUST process the contents. If the attribute is absent1693
or set to FALSE the receiver SHOULD attempt to process the content of the <UsageDirective> header block.1694

A receiver that processes the contents of a <UsageDirective> header block SHOULD verify the integrity of the1695
header block -- that is, it should verify any digital signatures that list the header block in its manifest [XMLDsig]. The1696
receiver MUST verify that the ref attribute refers to an element in the message. That receiver MUST further process1697
the message according to the policy expressed by the children elements of the <UsageDirective> header block.1698
Those children elements will be imported from a foreign namespace, and MUST be parsed and interpreted according1699
to the applicable schema and processing rules of that foreign namespace.1700

A receiver that cannot process a <UsageDirective> with mustUnderstand set to TRUE MUST respond with a1701
<S: Fault>. The <s: Fault> MUST contain a <detail> element which in turn MUST contain a <Status> element1702
with its code attribute set to CannotHonourUsageDirective. The <Status> element SHOULD possess a ref1703
attribute with its value set to the value of the id attribute of the offending <UsageDirective> header block in the1704
request message.1705

A receiver that cannot honor a non-mandatory (without mustUnderstand set to TRUE) <UsageDirective> must1706
respond according to the contained policy. In addition, in this case the receiver MAY respond with a SOAP-based ID-1707
* message that includes a <Status> element with its code attribute set to CannotHonourUsageDirective. This1708
<Status> element instance SHOULD include a ref attribute with its value set to the value of the id attribute of the1709
<UsageDirective> header block in the request message that could not be honored.1710

In this case, the receiver MAY include one or more new <UsageDirective> header blocks in its response message,1711
each expressing a policy that the receiver would have been able to honor. The ref attribute of these headers SHOULD1712
be set to the value of the <wsa: MessageID> header block in the request.1713

6.7. The <ApplicationEPR> Header Block1714

This section defines the <ApplicationEPR> header block. This header may be included in a message zero or more1715
times and provides a means for a sender to specify application endpoints that may be referenced from the SOAP Body1716
of the message.1717

The <ApplicationEPR> header block is an extension of <wsa: EndpointReferenceType>.1718

The schema fragment in Figure 12 defines the The <ApplicationEPR> header block.1719

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

49

1720
 1721
 <!-- application epr header block -->1722

1723
 <xs: element name="ApplicationEPR" type="wsa: EndpointReferenceType"/>1724

1725
 1726

Figure 12. The <ApplicationEPR> Header Block Schema1727

1728
 <sb: ApplicationEPR S: mustUnderstand="1"1729
 S: actor="http: //schemas.../next"1730
 wsu: Id="NotifyTo-001">1731
 <wsa: Address>...</wsa: Address>1732
 </sb: ApplicationEPR>1733
 1734

Example 17. An instantiated <ApplicationEPR> header block1735

6.8. The <UserInteraction> Header Block1736

6.8.1. Overview1737

A WSC that interacts with a user (typically through a web-site offered by the WSC) may need to indicate its readiness1738
to redirect the user agent of the user, or its readiness to pose questions to the user on behalf of other parties (such as1739
WSPs). The <UserInteraction> header block provides a means by which a WSC can indicate its preferences and1740
capabilities for interactions with requesting principals and, additionally, a SOAP fault message and HTTP redirect1741
profile that enables the WSC and WSP to cooperate in redirecting the requesting principal to the WSP and, after browser1742
interaction, back to the WSC.1743

6.8.2. UserInteraction Element1744

The <UserInteraction> element contains:1745

InteractionService [Optional]1746
If present, this element MUST describe an interaction service hosted by the sender. This indicates that the sender1747
can process messages defined for the interaction service [LibertyInteract], posing questions from the recipient of1748
the message to the Principal.1749

interact [Optional]1750
Indicates any preference that the sender has about interactions between the receiver and the requesting principal.1751
The value is a string, for which we define the following values:1752

• InteractIfNeeded to indicate to the recipient that it should interact with the requesting principal if needed to1753
satisfy the ID-WSF request. This is the default.1754

• DoNotInteract to indicate to the recipient that it MUST NOT interact with the requesting principal, either1755
directly or indirectly. The sender prefers to receive an error response over the situation where the requesting1756
principal would be distracted by an interaction.1757

• DoNotInteractForData to indicate to the recipient that it MAY interact with the requesting principal only if1758
an explicit policy for the offered service so requires. The sender prefers to receive an error response over the1759
situation where the WSP would obtain service response data (e.g., Personal Profile data) from the resource1760
owner, but the sender does prefer to obtain a positive service response even if that requires policy-related1761
interaction for, e.g., obtaining consent.1762

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

50

Note:1763

Implementors may choose to define additional values to indicate finer grained control over the user1764
interactions.1765

language [Optional]1766
This attribute indicates languages that the user is likely able to process. The value of this attribute is a space1767
separated list of language identification tags ([RFC3066]). The WSC can obtain this information from the HTTP1768
([RFC2616]) Accept-Language header, or by other means, for example from a personal profile service.1769

redirect [Optional]1770
An optional attribute to indicate that the sender supports the <RedirectRequest> element that a WSP may1771
include in a message to the WSC. The value is true or false. When absent the default behavior will be as if false.1772

maxInteractTime [Optional]1773
This is used to indicate the maximum time in seconds that the sender regards as reasonable for any possible1774
interaction. The receiver is not expected to start any interaction if it has reason to assume that such an interaction1775
is likely to take more time. In case an interaction is started and does seem to take longer the receiver is expected1776
to respond with a message that contains a InteractionTimeout status code to the sender.1777

The schema fragment in Figure 13 defines the The <UserInteraction> header block.1778

1779
1780

 <!-- user interaction header block -->1781
1782

 <xs: complexType name="UserInteractionHeaderType">1783
 <xs: sequence>1784
 <xs: element name="InteractionService" type="wsa: EndpointReferenceType" 1785
 minOccurs="0" maxOccurs="unbounded"/>1786
 </xs: sequence>1787
 <xs: attribute name="interact" type="xs: string" use="optional" default="InteractIfNeeded"/>1788
 <xs: attribute name="language" type="xs: NMTOKENS" use="optional"/>1789
 <xs: attribute name="redirect" type="xs: boolean" use="optional" default="0"/>1790
 <xs: attribute name="maxInteractTime" type="xs: integer" use="optional"/>1791
 <xs: anyAttribute namespace="##other" processContents="lax"/>1792
 </xs: complexType>1793

1794
 <xs: element name="UserInteraction" type="UserInteractionHeaderType"/>1795

1796
 1797

Figure 13. The <UserInteraction> Header Block Schema1798

6.8.3. UserInteraction Examples1799

Below is an example for a WSC that is prepared to redirect the user to a WSP, and also is ready to accept an <is:1800
InteractionRequest>. The WSC wishes that the WSP will not attempt to prompt the resource owner for missing1801
data; but accepts interactions for consent, as long as questioning the user will not take more than 60 seconds. The WSC1802
expects the user to understand US English and Finnish.1803

 1804
 <sb: UserInteraction interact="DoNotInteractForData" language="en-US fi" 1805
 maxInteractTime="60" redirect="true">1806

1807
 <sb: InteractionService xmlns: disco="urn: liberty: disco: 2006-08">1808
 <wsa: Address>endpoint for interaction requests</wsa: Address>1809
 <wsa: Metadata>1810
 <disco: ServiceType>urn: liberty: is: 2006-08</disco: ServiceType>1811
 <disco: Provider>http: //someWSC</disco: Provider>1812
 <disco: Description>1813
 <disco: Endpoint>http: //IS.com/soap</disco: Endpoint>1814

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

51

 </disco: Description> 1815
 </wsa: Metadata>1816
 </sb: InteractionService> 1817
 </sb: UserInteraction> 1818

The following is an example for a WSC that wants to ensure that the WSP will not attempt to contact the requesting1819
principal, even if this may hinder serving the actual request; the WSC would rather receive an error, or a less optimal1820
response (e.g., fewer profile attributes).1821

1822
 <sb: UserInteraction interact="DoNotInteract"/>1823
 1824

6.8.4. Processing Rules1825

If the sender includes an InteractionService element, it MUST set the value of <disco: ServiceType> within1826
to urn: liberty: is: 2006-08.1827

If the sender sets interact="DoNotInteract" it MUST omit the InteractionService element, as well as the1828
language, redirect and maxInteractTime attributes.1829

The recipient of a message with a UserInteraction element MUST NOT respond with a <RedirectRequest> if1830
the redirect is false or if redirect is absent.1831

The recipient MUST NOT start a requesting principal interaction if the interact attribute has a value of "DoNotIn-1832
teract".1833

The recipient MUST NOT interact with the requesting principal to obtain data that is to be included in a successful1834
service response if the interact attribute has a value of "DoNotInteractForData". In this case the recipient MAY1835
start an interaction if a policy concerning available data so requires; for example if a policy requires that the Principal1836
must be prompted for consent.1837

The recipient SHOULD NOT start a requesting principal interaction if it expects that the time to complete the interaction1838
will exceed the value of the maxInteractTime.1839

The recipient MUST respond to the message after at most the number of seconds given as the value of the1840
maxInteractTime attribute.1841

The sender must ensure that the UserInteraction element is integrity protected; i.e., if message level authentication1842
(see [LibertySecMech]) is used the sender MUST sign the UserInteraction element. Likewise the receiver must1843
ensure that the integrity of the UserInteraction element is not compromised, according to the processing rules in1844
[LibertySecMech] .1845

6.8.4.1. UserInteraction Faults1846

A processor of a UserInteraction that must indicate an error situation related to this header SHOULD respond to1847
the sender with an ID-WSF message that contains a Status element in the detail element of a S: Fault, or in a1848
service specific S: Body component, or inside a higher level Status element. The code attribute of the included1849
Status element can be set to one of the following values:1850

• InteractionRequired, as indication that the recipient has a need to start an interaction in order to satisfy the service1851
request but the interact attribute value was set to DoNotInteract.1852

• InteractionRequiredForData. This indicates that the service request could not be satisfied because the WSP would1853
have to interact with the requesting principal in order to obtain (some of) the requested data but the interact1854
attribute value was set to DoNotInteractForData.1855

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

52

• InteractionTimeNotSufficient, as indication that the recipient has a need to start an interaction but has reason to1856
believe that more time is needed that allowed for by the value of the maxInteractTime attribute.1857

• InteractionTimeout, as indication that the recipient could not satisfy the service request due to an unfinished in-1858
teraction.1859

6.8.5. Cross-principal interactions1860

A 'cross-principal' interaction is defined by a WSC making a request on behalf of a principal who is different than the1861
principal who 'owns' the resource in question. In such a case, the identity of the requesting principal will be identified1862
by the security context of the message. The identity of the resource owner is expressed by the <sb:1863
TargetIndentity> header.1864

Any sb: UserInteraction header in such a message always refers to the requesting principal. Consequently, if the1865
WSP desires to interact with the requesting principal, it may use the interaction options as indicated by the1866
UserInteraction (if present) or discover the requesting principal's permanent IS.1867

If the WSP desires to interact with the resource owner (as indicated by the TargetIdentity header), it will necessarily1868
need to discover that principal's permanent IS as the alternative interaction mechanisms are not an option.1869

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

53

7. The RedirectRequest Protocol1870

In the RedirectRequest protocol the WSP requests the WSC to redirect the user agent of the Principal to a resource1871
(URL) at the WSP. Once the user agent issues the HTTP request to fetch the URL the WSP has the opportunity to1872
present one or more pages with questions and other information to the Principal. When the WSP has obtained the1873
information that it required to serve the WSC, it redirects the user agent back to the WSC. The WSC can now re-issue1874
its original request to the WSP. See [LibertyInteract] for an overview of various user interaction flows, including this1875
redirect-based protocol.1876

7.1. RedirectRequest Element1877

The RedirectRequest element instructs the WSC to redirect the user to the WSP. It is an indication of the WSP that1878
it cannot service a request made by the WSC before it obtains some more information from the user. The element is1879
typically present in the detail element within a <S: Fault>. The <RedirectRequest> has one attribute:1880

redirectURL [Re-
quired]

The URL to which the WSC should redirect the user agent. This URL MUST NOT contain1881
parameters named ReturnToURL or IDP as these are reserved for the recipient of the1882
<RedirectRequest> (see the RedirectRequest protocol). The URL SHOULD start1883
with https: to ensure the establishment of a secure connection between the user agent and1884
the WSP.1885

The optional text content of the element can be used to indicate the reason for the need for redirection of the requesting1886
principal.1887

The schema fragment for the element is:1888

 <xs: element name="RedirectRequest" type="RedirectRequestType"/> 1889
 <xs: complexType name="RedirectRequestType">1890
 <xs: attribute name="redirectURL" type="xs: anyURI" use="required"/>1891
 </xs: complexType>1892

An example of a <RedirectRequest> in a SOAP Fault could look like:1893

 <S: Envelope xmlns: S="http: //schemas.xmlsoap.org/soap/envelope/">1894
 <S: Header>1895
 <wsa: MessageID xmlns: wsa="http: //www.w3.org/2005/02/addressing">...</wsa: MessageID>1896
 <wsa: RelatesTo>...</wsa: RelatesTo>1897
 </S: Header>1898
 <S: Body>1899
 <S: Fault>1900
 <faultcode>SOAP-ENV: Server</faultcode> 1901
 <faultstring>Server Error</faultstring>1902
 <detail>1903
 <RedirectRequest redirectURL="https: //someWSP/getConsent?transID=de67hj89jk65nk34"> 1904
 Redirecting to AP to obtain consent1905
 </RedirectRequest>1906
 </detail>1907
 </S: Fault>1908
 </S: Body> 1909
 </S: Envelope>1910

7.1.1. Processing Rules1911

The recipient of a <RedirectRequest> MUST verify that the redirectURL points to the WSP, i.e., the host in the1912
URL should be the same as the host to which the WSC sent its service request. If this is not the case the recipient MUST1913
ignore the <RedirectRequest>.1914

The recipient MUST attempt to direct the user agent to issue an HTTP request ([RFC2616]) for the URL in the1915
redirectURL attribute of the <RedirectRequest>. That user agent MUST be associated with the ID-WSF request1916

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

54

that caused the <RedirectRequest>. The recipient MUST add a ReturnToURL parameter to the redirectURL with1917
its value the URL-encoded URL which the recipient wants the user agent directed back to. It is recommended that this1918
ReturnToURL includes an identifier that associates the URL to the originating ID-WSF message to the WSP. The1919
recipient MAY add an IDP parameter to the redirectURL with its value the providerID of an identity provider that1920
was used to authenticate the user to the WSC.1921

The recipient may instruct the user agent to submit either an HTTP GET or an HTTP POST request to the URL; in this1922
way the WSC can avoid problems with user agents that can handle only short URLs. If the user agent is instructed to1923
submit a HTTP POST, all URL parameters should be form-encoded, and the HTTP content-type header of the request1924
MUST be application/x-www-form-urlencoded. Note that this implies that the WSP SHOULD accept both an1925
HTTP GET as well as an HTTP POST request for the redirectURL, but in either case retrieval of URL parameters1926
can be done using well-known techniques; most HTTP server environments effectively encapsulate the different meth-1927
ods for submission of parameters.1928

As an example, assume that a Principal visits a service provider. As a result the service provider (acting as WSC) could1929
have made a request to a WSP, and that WSP would have responded with a SOAP Fault similar to that of the example1930
above. The WSC would now send a HTTP response to the user agent that would look like:1931

 HTTP 3021932
Location: 1933
https: //someWSP/getConsent?transID=de67hj89jk65nk34&ReturnToURL=1934
https%3a%2f%2fsomeWSC%2fisReturn3bjsession%3d9A6F2E3A&IDP=1A2B3C4D5E1A2B3C4D5E 1935
 https: //someWSP/getConsent?transID=de67hj89jk65nk34&ReturnToURL=https%3a%2f%2fsomeWSC%2fisReturn3bjsession%3d9A6F2E3A&IDP=1A2B3C4D5E1A2B3C4D5E 1936
 ... other HTTP headers ...1937

1938
<html>1939
 <head>1940
 <title>Redirecting...</title>1941
 <title>Redirecting...</title>1942
 </head>1943
 <body>1944
 <p>Redirecting to AP to obtain consent</p>1945
 </body>1946
 </body>1947
</html>1948

The WSC appends its own ReturnToURL as a parameter to the value of the redirectURL element that the WSC1949
specified in its RedirectRequest.1950

7.2. RedirectRequest Protocol1951

The <RedirectRequest> protocol consists of the following steps, each with normative rules:1952

7.2.1. Step 1: WSC Issues Normal ID-WSF Request1953

For the <RedirectRequest> protocol to be initiated the originating ID-WSF message MUST contain a1954
UserInteraction element with its redirect attribute set to true.1955

The ID-WSF message SHOULD contain a wsa: FaultTo element to which the WSC desires fault messages be sent.1956

7.2.2. Step 2: WSP Responds with <RedirectRequest>1957

If, and only if, an ID-WSF message contains a <UserInteraction> element with its redirect attribute set to1958
true MAY the recipient of the ID-WSF message respond with a <RedirectRequest> message in a SOAP Fault.1959

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

55

Note:1960

The redirectURL attribute MUST be constructed as to include the necessary information for mapping the1961
upcoming HTTP request to the originating ID-WSF message; for example by inclusion of the value of the1962
wsa: MessageID Header from that message.1963

7.2.3. Step 3: WSC Instructs User Agent to Contact the WSP1964

When the WSC receives a <RedirectRequest> it MUST attempt to direct the user agent to issue an HTTP request1965
for the URL in the redirectURL attribute of the RedirectRequest. The user agent MUST be associated with the1966
ID-WSF message that caused the <RedirectRequest>. The WSC MUST append a ReturnToURL parameter to the1967
redirectURL with its value the URL-encoded URL to which the WSC wants the user agent directed back.1968

Note:1969

How this step is performed will depend on the user agent. In most cases it is accomplished by a simple HTTP1970
302 response with a Location header set to the redirectURL. Different user agents may be better served1971
by other approaches, for example a WML browser may be able to handle a redirect deck better than a potentially1972
long URL. See the processing rules for the <RedirectRequest>.1973

7.2.4. Step 4: WSP Interacts with User Agent1974

In step 4 the user agent issues the HTTP request for the redirectURL, with the ReturnToURL parameter appended,1975
with any IDP parameter also appended. The WSP MUST verify that the ReturnToURL points to the WSC, i.e., the1976
host in the URL should be the same as the host to which the WSP sent the <RedirectRequest>. If this is not the1977
case the WSP MUST ignore the ReturnToURL, abort the protocol, and construct a meaningful error message for the1978
user. If verification succeeds, however, the service (WSP) MAY now proceed with a HTTP response that contains an1979
inquiry directed at the user. The WSP SHOULD verify that the identity of the user is that of the owner of the resource1980
that was targeted in the originating ID-WSF request, for example by means of a <saml: AuthnRequest> (see1981
[SAMLCore2]). This step may be followed by any number of interactions between the user and the WSP, but the WSP1982
should attempt to execute step 5 within a reasonable time.1983

7.2.5. Step 5: WSP Redirects User Agent Back to WSC1984

In step 5 the WSP that issued the <RedirectRequest> MUST attempt to instruct the user agent to issue an HTTP1985
request for the ReturnToURL that was included as parameter on the URL of the HTTP request made in step 4. The1986
WSP SHOULD append a ResendMessage parameter to the ReturnToURL. This parameter serves as a hint to the1987
WSC about the next step. A value of 0 or false indicates that the WSC should not try to re-issue the originating ID-1988
WSF request, presumably because the resource owner did not approve completion of the transaction. If the value of1989
ResendMessage is true, 1, or any string other than 0 or false, it is an indication that the WSP recommends that the1990
WSC re-issue the originating request. It is RECOMMENDED that in this situation, the value of this parameter be set1991
to the value of the wsa: MessageID element of the originating ID-WSF message.1992

7.2.6. Step 6: User Agent Requests ReturnToURL from WSC1993

In step 6 the user agent requests the ReturnToURL from the WSC. The WSC SHOULD check the value of the1994
ResendMessage parameter; if the value is 0 or false the WSC SHOULD NOT send an ID-WSF message with a request1995
for the same resource and/or action (as in step 1). If the value of the ResendMessage parameter is anything else, then1996
the WSC MAY resend the message (Step 7).1997

After receiving the response from the WSP, the WSC should send a HTTP response to the user agent.1998

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

56

7.2.7. Step 7: WSC Resends Message1999

If the WSC resends its request it MUST set the value of the wsa: RelatesTo SOAP Header to the same value of the2000
wsa: MessageID SOAP Header of the SOAP Fault that carried the <RedirectRequest> element (in step 2). .2001

7.2.8. Steps 8: WSP sends response2002

The WSP responds to the WSC's second request. The WSP MUST set the value of the wsa: RelatesTo SOAP Header2003
to the same value of the wsa: MessageID SOAP Header of the WSC's resent request.2004

7.2.9. Steps 9: WSC sends HTTP response to User Agent2005

Finally, the WSC returns an HTTP response to the user agent.2006

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

57

8. Security Considerations2007

• The header blocks specified in this document should be integrity-protected using the mechanisms detailed in2008
[LibertySecMech].2009

• Header blocks should be signed in accordance with [LibertySecMech]. The receiver of a message containing a2010
signature that covers specific header blocks should verify the signature as part of verifying the integrity of the2011
header block.2012

• Metadata [LibertyMetadata] should be used to the greatest extent possible to verify message sender identity claims.2013

• Message senders and receivers should be authenticated to one another via the mechanisms discussed in [Liberty-2014
SecMech].2015

• To prevent message replay, receivers should maintain a message cache, and check received messageID values2016
against the cache.2017

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

58

9. Acknowledgements2018

The members of the Liberty Technical Expert group, especially Greg Whitehead, Jonathan Sergent, Xavier Serret, and2019
Conor Cahill, provided valuable input to this specification. The docbook source code for this specification was hand2020
set to the tunes of The Sugarcubes, King Crimson, Juliana Hatfield, Smashing Pumpkins, Evanescence, Mad at Gravity,2021
Elisa Korenne, The Breeders, fIREHOSE, Polly Jean Harvey, Jimi Hendrix, and various others.2022

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

59

References2023

Normative2024

[LibertyInteract] Aarts, Robert, Madsen, Paul, eds. "Liberty ID-WSF Interaction Service Specification," Version 2.0-2025
errata-v1.0, Liberty Alliance Project (21 April, 2007). http://www.projectliberty.org/specs2026

[LibertyMetadata] Davis, Peter, eds. "Liberty Metadata Description and Discovery Specification," Version 2.0-02,2027
Liberty Alliance Project (25 November 2004). http: //www.projectliberty.org/specs2028

[LibertySecMech] Hirsch, Frederick, eds. "Liberty ID-WSF Security Mechanisms Core," Version 2.0-errata-v1.0,2029
Liberty Alliance Project (21 April, 2007). http://www.projectliberty.org/specs2030

[RFC2045] Freed, N., Borenstein, N., eds. (November 1996). "Multipurpose Internet Mail Extensions (MIME) Part2031
One: Format of Internet Message Bodies ," RFC 2045., Internet Engineering Task Force http://www.ietf.org/2032
rfc/rfc2045.txt2033

[RFC2119] S. Bradner "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, The Internet Engi-2034
neering Task Force (March 1997). http://www.ietf.org/rfc/rfc2119.txt2035

[RFC2828] Shirey, R., eds. (May 2000). "Internet Security Glossary," RFC 2828., Internet Engineering Task Force2036
http://www.ietf.org/rfc/rfc2828.txt2037

[RFC3986] Berners-Lee, T., Fielding, R., Masinter, L., eds. (January 2005). "Uniform Resource Identifier (URI):2038
Generic Syntax," RFC 3986 (Obsoletes RFC2732, RFC2396, RFC1808) (Updates RFC1738) (Also STD0066)2039
(Status: STANDARD), The Internet Engineering Task Force http://www.ietf.org/rfc/rfc3986.txt2040

[SAMLCore2] Cantor, Scott, Kemp, John, Philpott, Rob, Maler, Eve, eds. (15 March 2005). "Assertions and Protocol2041
for the OASIS Security Assertion Markup Language (SAML) V2.0," SAML V2.0, OASIS Standard, Organ-2042
ization for the Advancement of Structured Information Standards http://docs.oasis-open.org/security/saml/2043
v2.0/saml-core-2.0-os.pdf2044

[SAMLGloss2] Hodges, Jeff, Philpott, Rob, Maler, Eve, eds. (15 March 2005). "Glossary for the OASIS Security2045
Assertion Markup Language (SAML) V2.0," SAML 2.0, OASIS Standard, Organization for the Advancement2046
of Structured Information Standards http://docs.oasis-open.org/security/saml/v2.0/saml-glossary-2.0-os.pdf2047

[Schema1-2] Thompson, Henry S., Beech, David, Maloney, Murray, Mendelsohn, Noah, eds. (28 October 2004).2048
"XML Schema Part 1: Structures Second Edition," Recommendation, World Wide Web Consortium http://2049
www.w3.org/TR/xmlschema-1/2050

[Schema2-2] Biron, Paul V., Malhotra, Ashok, eds. (28 October 2004). "XML Schema Part 2: Datatypes Second2051
Edition," Recommendation, World Wide Web Consortium http://www.w3.org/TR/xmlschema-2/2052

[SOAPv1.1] "Simple Object Access Protocol (SOAP) 1.1," Box, Don, Ehnebuske, David , Kakivaya, Gopal, Layman,2053
Andrew, Mendelsohn, Noah, Nielsen, Henrik Frystyk, Winer, Dave, eds. World Wide Web Consortium W3C2054
Note (08 May 2000). http://www.w3.org/TR/2000/NOTE-SOAP-20000508/2055

[SOAPv1.1-Schema] "SOAP 1.1 Envelope schema," W3C W3C Note http://schemas.xmlsoap.org/soap/envelope/2056

[WSDLv1.1] "Web Services Description Language (WSDL) 1.1," Christensen, Erik, Curbera, Francisco, Meredith,2057
Greg, Weerawarana, Sanjiva, eds. World Wide Web Consortium W3C Note (15 March 2001). http://2058
www.w3.org/TR/2001/NOTE-wsdl-200103152059

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

60

http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2828.txt
http://www.ietf.org/rfc/rfc3986.txt
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-glossary-2.0-os.pdf
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[XML] Bray, Tim, Paoli, Jean, Sperberg-McQueen, C. M., Maler, Eve, Yergeau, Francois, eds. (04 February 2004).2060
"Extensible Markup Language (XML) 1.0 (Third Edition)," Recommendation, World Wide Web Consorti-2061
um http://www.w3.org/TR/2004/REC-xml-200402042062

[XMLDsig] Eastlake, Donald, Reagle, Joseph, Solo, David, eds. (12 Feb 2002). "XML-Signature Syntax and Pro-2063
cessing," Recommendation, World Wide Web Consortium http://www.w3.org/TR/xmldsig-core2064

[WSAv1.0] "Web Services Addressing (WS-Addressing) 1.0," Gudgin, Martin, Hadley, Marc, Rogers, Tony, eds.2065
World Wide Web Consortium W3C Recommendation (9 May 2006). http://www.w3.org/TR/2006/REC-ws-2066
addr-core-20060509/2067

[WSAv1.0-SOAP] "WS-Addressing 1.0 SOAP Binding," Gudgin, Martin, Hadley, Marc, eds. World Wide Web Con-2068
sortium W3C Recommendation (9 May 2006). http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/2069

[WSAv1.0-Schema] "WS-Addressing 1.0 Schema," W3C, W3C Working Draft http://dev.w3.org/cvsweb/~checkout~/2070
2004/ws/addressing/ws-addr.xsd2071

[wss-sms] Hallam-Baker, Phillip, Kaler, Chris, Monzillo, Ronald, Nadalin, Anthony, eds. (January, 2004). "Web2072
Services Security: SOAP Message Security," OASIS Standard V1.0 [OASIS 200401], Organization for the2073
Advancement of Structured Information Standards http://docs.oasis-open.org/wss/2004/01/oasis-200401-2074
wss-soap-message-security-1.0.pdf2075

Informational2076

[LibertyDisco] Cahill, Conor, Hodges, Jeff, eds. "Liberty ID-WSF Discovery Service Specification," Version 2.0-2077
errata-v1.0, Liberty Alliance Project (29 November, 2006). http://www.projectliberty.org/specs2078

[LibertyGlossary] Hodges, Jeff, eds. "Liberty Technical Glossary," Version v2.0, Liberty Alliance Project (30 July,2079
2006). http: //www.projectliberty.org/specs2080

[LibertyIDWSFOverview] Tourzan, Jonathan, Koga, Yuzo, eds. "Liberty ID-WSF Web Services Framework Over-2081
view," Version 2.0, Liberty Alliance Project (30 July, 2006). http: //www.projectliberty.org/specs2082

[LibertyIDWSF20SCR] Whitehead, Greg, eds. Version 1.0 errata v1.0, Liberty Alliance Project (21 April, 2007).2083
http://www.projectliberty.org/specs2084

[LibertyIDPP] Kellomäki, Sampo, Lockhart, Rob, eds. "Liberty ID-SIS Personal Profile Service Specification," Ver-2085
sion 1.1, Liberty Alliance Project (29 September, 2005). http://www.projectliberty.org/specs2086

[LibertyIDWSFv20Errata] Champagne, Darryl, Lockhart, Rob, Tiffany, Eric, eds. "Liberty ID-WSF 2.0 Errata," Ver-2087
sion 1.0, Liberty Alliance Project (13 April, 2007). http://www.projectliberty.org/specs2088

[Merriam-Webster] "Merriam-Webster Dictionary," http://www.merriam-webster.com/2089

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., eds. (June 1999).2090
"Hypertext Transfer Protocol -- HTTP/1.1," RFC 2616, The Internet Engineering Task Force http://2091
www.ietf.org/rfc/rfc2616.txt2092

[RFC3066] Alvestrand, H., eds. (January 2001). "Tags for the Identification of Languages," RFC 3066., Internet En-2093
gineering Task Force http://www.ietf.org/rfc/rfc3066.txt2094

[RFC4086] Eastlake , D., Schiller, J., Crocker, S., eds. (June 2005). "Randomness Recommendations for Security ,"2095
RFC 4086, Internet Engineering Task Force http://www.ietf.org/rfc/rfc4086.txt2096

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

61

http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://dev.w3.org/cvsweb/~checkout~/2004/ws/addressing/ws-addr.xsd
http://dev.w3.org/cvsweb/~checkout~/2004/ws/addressing/ws-addr.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.merriam-webster.com/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc4086.txt

[SOAPv1.2] "SOAP Version 1.2 Part 1: Messaging Framework," Gudgin, Martin, Hadley, Marc, Mendelsohn, Noah,2097
Moreau, Jean-Jacques, Nielsen, Henrik Frystyk, eds. World Wide Web Consortium W3C Recommendation2098
(07 May 2003). http://www.w3.org/TR/2003/PR-soap12-part1-20030507/2099

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

62

http://www.w3.org/TR/2003/PR-soap12-part1-20030507/

A. liberty-idwsf-soap-binding.xsd Schema Listing2100

2101
 <?xml version="1.0" encoding="UTF-8"?>2102
<xs: schema targetNamespace="urn: liberty: sb" 2103
 xmlns: xs="http: //www.w3.org/2001/XMLSchema" 2104
 xmlns="urn: liberty: sb" 2105
 elementFormDefault="qualified" 2106
 attributeFormDefault="unqualified">2107
 2108
 2109
 2110
 <!-- Author: John Kemp -->2111
 <!-- Last editor: $Author: dchampagne $ -->2112
 <!-- $Date: 2006-07-27 22: 44: 20 -0400 (Thu, 27 Jul 2006) $ -->2113
 <!-- $Revision: 3793 $ -->2114
 2115
 <xs: annotation>2116
 <xs: documentation>2117
 Liberty ID-WSF SOAP Binding Specification XSD2118
 </xs: documentation>2119
 <xs: documentation> 2120
 The source code in this XSD file was excerpted verbatim from: 2121
 2122
 Liberty ID-WSF SOAP Binding Specification2123
 Version 2.02124
 30 July, 20062125
 2126
 Copyright (c) 2006 Liberty Alliance participants, see2127
 http: //www.projectliberty.org/specs/idwsf_2_0_final_copyrights.php2128
 </xs: documentation>2129
 </xs: annotation>2130
 2131

2132
 <!-- framework header block -->2133

2134
 <xs: complexType name="FrameworkType">2135
 <xs: sequence>2136
 <xs: any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2137
 </xs: sequence>2138
 <xs: attribute name="version" type="xs: string" use="required"/>2139
 <xs: anyAttribute namespace="##other" processContents="lax"/>2140
 </xs: complexType>2141

2142
 <xs: element name="Framework" type="FrameworkType"/>2143

2144
</xs: schema> 2145

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

63

B. liberty-idwsf-soap-binding-v2.0.xsd Schema Listing2146

2147
 <?xml version="1.0" encoding="UTF-8"?>2148
<xs: schema targetNamespace="urn: liberty: sb: 2006-08" 2149
 xmlns: samlp="urn: oasis: names: tc: SAML: 2.0: protocol"2150
 xmlns: wsu="http: //docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" 2151
 xmlns: wsa="http: //www.w3.org/2005/08/addressing"2152
 xmlns: xs="http: //www.w3.org/2001/XMLSchema" 2153
 xmlns: lu="urn: liberty: util: 2006-08"2154
 xmlns="urn: liberty: sb: 2006-08" 2155
 elementFormDefault="qualified" 2156
 attributeFormDefault="unqualified">2157
 2158
 <!-- Author: John Kemp -->2159
 <!-- Last editor: $Author: dchampagne $ -->2160
 <!-- $Date: 2006-07-27 22: 44: 20 -0400 (Thu, 27 Jul 2006) $ -->2161
 <!-- $Revision: 3793 $ -->2162
 2163
 <xs: import 2164
 namespace="http: //docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" 2165
 schemaLocation="wss-util-1.0.xsd"/>2166

2167
 <xs: import 2168
 namespace="urn: oasis: names: tc: SAML: 2.0: protocol" 2169
 schemaLocation="saml-schema-protocol-2.0.xsd"/>2170

2171
 <xs: import 2172
 namespace="http: //www.w3.org/2005/08/addressing" 2173
 schemaLocation="ws-addr-1.0.xsd"/>2174
 2175
 <xs: import2176
 namespace="urn: liberty: util: 2006-08"2177
 schemaLocation="liberty-idwsf-utility-v2.0.xsd"/>2178
 2179
 2180
 2181
 <xs: annotation>2182
 <xs: documentation>2183
 Liberty ID-WSF SOAP Binding Specification 2.0 XSD2184
 </xs: documentation>2185
 <xs: documentation> 2186
 The source code in this XSD file was excerpted verbatim from: 2187
 2188
 Liberty ID-WSF SOAP Binding Specification2189
 Version 2.02190
 30 July, 20062191
 2192
 Copyright (c) 2006 Liberty Alliance participants, see2193
 http: //www.projectliberty.org/specs/idwsf_2_0_final_copyrights.php2194
 </xs: documentation>2195
 </xs: annotation>2196
 2197

2198
 <!-- sender header block -->2199

2200
 <xs: complexType name="SenderType">2201
 <xs: attribute name="providerID" type="xs: anyURI" use="required"/>2202
 <xs: attribute name="affiliationID" type="xs: anyURI" use="optional"/>2203
 <xs: anyAttribute namespace="##other" processContents="lax"/>2204
 </xs: complexType>2205

2206
 <xs: element name="Sender" type="SenderType"/>2207

2208
 2209
 <!-- target identity header block -->2210

2211

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

64

 <xs: complexType name="TargetIdentityType">2212
 <xs: sequence>2213
 <xs: any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2214
 </xs: sequence>2215
 <xs: anyAttribute namespace="##other" processContents="lax"/>2216
 </xs: complexType>2217
 2218
 <xs: element name="TargetIdentity" type="TargetIdentityType"/>2219

2220
 2221
 <!-- credentials context header block -->2222

2223
 <xs: complexType name="CredentialsContextType">2224
 <xs: sequence>2225
 <xs: element ref="samlp: RequestedAuthnContext" minOccurs="0"/>2226
 <xs: element name="SecurityMechID" type="xs: anyURI" minOccurs="0" maxOccurs="unbounded"/>2227
 </xs: sequence>2228
 <xs: anyAttribute namespace="##other" processContents="lax"/>2229
 </xs: complexType>2230

2231
 <xs: element name="CredentialsContext" type="CredentialsContextType"/>2232

2233
 2234
 <!-- epr update header block -->2235

2236
 <xs: complexType name="EndpointUpdateType">2237
 <xs: complexContent>2238
 <xs: extension base="wsa: EndpointReferenceType">2239
 <xs: attribute name="updateType" type="xs: anyURI" use="optional"/>2240
 </xs: extension>2241
 </xs: complexContent>2242
 </xs: complexType>2243
 2244
 <xs: element name="EndpointUpdate" type="EndpointUpdateType"/>2245

2246
 2247
 <!-- timeout header block -->2248

2249
 <xs: complexType name="TimeoutType">2250
 <xs: attribute name="maxProcessingTime" type="xs: integer" use="required"/>2251
 <xs: anyAttribute namespace="##other" processContents="lax"/>2252
 </xs: complexType>2253
 2254
 <xs: element name="Timeout" type="TimeoutType"/>2255

2256
 2257
 <!-- processing context header block -->2258

2259
 <xs: complexType name="ProcessingContextType">2260
 <xs: simpleContent>2261
 <xs: extension base="xs: anyURI">2262
 <xs: anyAttribute namespace="##other" processContents="lax"/>2263
 </xs: extension>2264
 </xs: simpleContent>2265
 </xs: complexType>2266

2267
 <xs: element name="ProcessingContext" type="ProcessingContextType"/>2268
 2269
 <!-- consent header block -->2270

2271
 <xs: complexType name="ConsentType">2272
 <xs: attribute name="uri" type="xs: anyURI" use="required"/>2273
 <xs: attribute name="timestamp" type="xs: dateTime" use="optional"/>2274
 <xs: anyAttribute namespace="##other" processContents="lax"/>2275
 </xs: complexType>2276

2277
 <xs: element name="Consent" type="ConsentType"/>2278

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

65

 2279
 <!-- usage directive header block -->2280

2281
 <xs: complexType name="UsageDirectiveType">2282
 <xs: sequence>2283
 <xs: any namespace="##other" processContents="lax" 2284
 maxOccurs="unbounded"/>2285
 </xs: sequence>2286
 <xs: attribute name="ref" type="xs: IDREF" use="required"/>2287
 <xs: anyAttribute namespace="##other" processContents="lax"/>2288
 </xs: complexType>2289

2290
 <xs: element name="UsageDirective" type="UsageDirectiveType"/>2291
 2292
 <!-- application epr header block -->2293

2294
 <xs: element name="ApplicationEPR" type="wsa: EndpointReferenceType"/>2295

2296
 <!-- user interaction header block -->2297

2298
 <xs: complexType name="UserInteractionHeaderType">2299
 <xs: sequence>2300
 <xs: element name="InteractionService" type="wsa: EndpointReferenceType" 2301
 minOccurs="0" maxOccurs="unbounded"/>2302
 </xs: sequence>2303
 <xs: attribute name="interact" type="xs: string" use="optional" default="InteractIfNeeded"/>2304
 <xs: attribute name="language" type="xs: NMTOKENS" use="optional"/>2305
 <xs: attribute name="redirect" type="xs: boolean" use="optional" default="0"/>2306
 <xs: attribute name="maxInteractTime" type="xs: integer" use="optional"/>2307
 <xs: anyAttribute namespace="##other" processContents="lax"/>2308
 </xs: complexType>2309

2310
 <xs: element name="UserInteraction" type="UserInteractionHeaderType"/>2311
 <xs: element name="RedirectRequest" type="RedirectRequestType"/> 2312
 <xs: complexType name="RedirectRequestType">2313
 <xs: attribute name="redirectURL" type="xs: anyURI" use="required"/>2314
 </xs: complexType>2315
</xs: schema> 2316

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

66

C. liberty-idwsf-utility-v2.0.xsd Schema Listing2317

2318
 <?xml version="1.0" encoding="UTF-8"?>2319
<xs: schema targetNamespace="urn: liberty: util: 2006-08"2320
 xmlns: xs="http: //www.w3.org/2001/XMLSchema"2321
 xmlns="urn: liberty: util: 2006-08"2322
 elementFormDefault="qualified"2323
 attributeFormDefault="unqualified"2324
 version="2.0-03">2325

2326
 <xs: annotation>2327
 <xs: documentation>2328
 Liberty Alliance Project utility schema. A collection of common2329
 IDentity Web Services Framework (ID-WSF) elements and types.2330
 This schema is intended for use in ID-WSF schemas.2331

2332
 This version: 2006-082333

2334
 Copyright (c) 2006 Liberty Alliance participants, see2335
 http: //www.projectliberty.org/specs/idwsf_2_0_final_copyrights.php2336
 </xs: documentation>2337
 </xs: annotation>2338
 <xs: simpleType name="IDType">2339
 <xs: annotation>2340
 <xs: documentation>2341
 This type should be used to provide IDs to components 2342
 that have IDs that may not be scoped within the local 2343
 xml instance document.2344
 </xs: documentation>2345
 </xs: annotation>2346
 <xs: restriction base="xs: string"/>2347
 </xs: simpleType>2348
 <xs: simpleType name="IDReferenceType">2349
 <xs: annotation>2350
 <xs: documentation> 2351
 This type can be used when referring to elements that are2352
 identified using an IDType.2353
 </xs: documentation>2354
 </xs: annotation>2355
 <xs: restriction base="xs: string"/>2356
 </xs: simpleType>2357
 <xs: attribute name="itemID" type="IDType"/>2358
 <xs: attribute name="itemIDRef" type="IDReferenceType"/>2359
 <xs: complexType name="StatusType">2360
 <xs: annotation>2361
 <xs: documentation> 2362
 A type that may be used for status codes. 2363
 </xs: documentation>2364
 </xs: annotation>2365
 <xs: sequence>2366
 <xs: element ref="Status" minOccurs="0" maxOccurs="unbounded"/>2367
 </xs: sequence>2368
 <xs: attribute name="code" type="xs: string" use="required"/>2369
 <xs: attribute name="ref" type="IDReferenceType" use="optional"/>2370
 <xs: attribute name="comment" type="xs: string" use="optional"/>2371
 </xs: complexType>2372

2373
 <xs: element name="Status" type="StatusType">2374
 <xs: annotation>2375
 <xs: documentation> 2376
 A standard Status type2377
 </xs: documentation>2378
 </xs: annotation>2379
 </xs: element>2380

2381
 <xs: complexType name="ResponseType">2382

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

67

 <xs: sequence>2383
 <xs: element ref="Status" minOccurs="1" maxOccurs="1"/>2384
 <xs: element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>2385
 </xs: sequence>2386
 <xs: attribute ref="itemIDRef" use="optional"/>2387
 <xs: anyAttribute namespace="##other" processContents="lax"/>2388
 </xs: complexType>2389
 <xs: element name="TestResult" type="TestResultType"/>2390
 <xs: complexType name="TestResultType">2391
 <xs: simpleContent>2392
 <xs: extension base="xs: boolean">2393
 <xs: attribute ref="itemIDRef" use="required"/>2394
 </xs: extension>2395
 </xs: simpleContent>2396
 </xs: complexType>2397
 <xs: complexType name="EmptyType">2398
 <xs: annotation>2399
 <xs: documentation> This type may be used to create an empty element </xs: documentation>2400
 </xs: annotation>2401
 <xs: complexContent>2402
 <xs: restriction base="xs: anyType"/>2403
 </xs: complexContent>2404
 </xs: complexType>2405
 <xs: element name="Extension" type="extensionType">2406
 <xs: annotation>2407
 <xs: documentation>2408
 An element that contains arbitrary content extensions 2409
 from other namespaces2410
 </xs: documentation>2411
 </xs: annotation>2412
 </xs: element>2413
 <xs: complexType name="extensionType">2414
 <xs: annotation>2415
 <xs: documentation>2416
 A type for arbitrary content extensions from other namespaces2417
 </xs: documentation>2418
 </xs: annotation>2419
 <xs: sequence>2420
 <xs: any namespace="##other" processContents="lax" maxOccurs="unbounded"/>2421
 </xs: sequence>2422
 </xs: complexType>2423
</xs: schema>2424

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

68

D. liberty-utility-v2.0.xsd Schema Listing2425

2426
 <?xml version="1.0" encoding="UTF-8"?>2427
<xs: schema xmlns: xs="http: //www.w3.org/2001/XMLSchema"2428
 elementFormDefault="qualified"2429
 attributeFormDefault="unqualified"2430
 version="2.0-01">2431
 <xs: annotation>2432
 <xs: documentation>2433
 Liberty Alliance Project utility schema. A collection of common2434
 elements and types for use with independent Liberty XML Schema documents.2435

2436
 This file intended for inclusion, rather than importation, into other schemas.2437
 This version: 2004-122438

2439
 Copyright (c) 2004 Liberty Alliance participants, see2440
 http: //www.projectliberty.org/specs/idff_copyrights.html2441
 </xs: documentation>2442
 </xs: annotation>2443
 <xs: simpleType name="IDType">2444
 <xs: annotation>2445
 <xs: documentation>2446
 This type should be used to provide IDs to components 2447
 that have IDs that may not be scoped within the local 2448
 xml instance document.2449
 </xs: documentation>2450
 </xs: annotation>2451
 <xs: restriction base="xs: string"/>2452
 </xs: simpleType>2453
 <xs: simpleType name="IDReferenceType">2454
 <xs: annotation>2455
 <xs: documentation> 2456
 This type can be used when referring to elements that are2457
 identified using an IDType.2458
 </xs: documentation>2459
 </xs: annotation>2460
 <xs: restriction base="xs: string"/>2461
 </xs: simpleType>2462
 <xs: complexType name="StatusType">2463
 <xs: annotation>2464
 <xs: documentation> 2465
 A type that may be used for status codes. 2466
 </xs: documentation>2467
 </xs: annotation>2468
 <xs: sequence>2469
 <xs: element ref="Status" minOccurs="0" maxOccurs="unbounded"/>2470
 </xs: sequence>2471
 <xs: attribute name="code" type="xs: string" use="required"/>2472
 <xs: attribute name="ref" type="IDReferenceType" use="optional"/>2473
 <xs: attribute name="comment" type="xs: string" use="optional"/>2474
 </xs: complexType>2475

2476
 <xs: element name="Status" type="StatusType">2477
 <xs: annotation>2478
 <xs: documentation> 2479
 A standard Status type2480
 </xs: documentation>2481
 </xs: annotation>2482
 </xs: element>2483

2484
 <xs: complexType name="EmptyType">2485
 <xs: annotation>2486
 <xs: documentation> This type may be used to create an empty element </xs: documentation>2487
 </xs: annotation>2488
 <xs: complexContent>2489
 <xs: restriction base="xs: anyType"/>2490

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

69

 </xs: complexContent>2491
 </xs: complexType>2492
 <xs: element name="Extension" type="extensionType">2493
 <xs: annotation>2494
 <xs: documentation>2495
 An element that contains arbitrary content extensions 2496
 from other namespaces2497
 </xs: documentation>2498
 </xs: annotation>2499
 </xs: element>2500
 <xs: complexType name="extensionType">2501
 <xs: annotation>2502
 <xs: documentation>2503
 A type for arbitrary content extensions from other namespaces2504
 </xs: documentation>2505
 </xs: annotation>2506
 <xs: sequence>2507
 <xs: any namespace="##other" processContents="lax" maxOccurs="unbounded"/>2508
 </xs: sequence>2509
 </xs: complexType>2510
</xs: schema>2511

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

70

E. wss-util-1.0.xsd Schema Listing2512

2513
 <?xml version="1.0" encoding="UTF-8"?>2514
<!-- 2515
OASIS takes no position regarding the validity or scope of any intellectual property or other 2516
rights that might be claimed to pertain to the implementation or use of the technology described 2517
in this document or the extent to which any license under such rights might or might not be 2518
available; neither does it represent that it has made any effort to identify any such rights. 2519
Information on OASIS's procedures with respect to rights in OASIS specifications can be found 2520
at the OASIS website. Copies of claims of rights made available for publication and any 2521
assurances of licenses to be made available, or the result of an attempt made to obtain a 2522
general license or permission for the use of such proprietary rights by implementors or users 2523
of this specification, can be obtained from the OASIS Executive Director.2524
OASIS invites any interested party to bring to its attention any copyrights, patents or 2525
patent applications, or other proprietary rights which may cover technology that may be 2526
required to implement this specification. Please address the information to the OASIS Executive Director.2527
Copyright © OASIS Open 2002-2004. All Rights Reserved.2528
This document and translations of it may be copied and furnished to others, and derivative 2529
works that comment on or otherwise explain it or assist in its implementation may be prepared, 2530
copied, published and distributed, in whole or in part, without restriction of any kind, 2531
provided that the above copyright notice and this paragraph are included on all such copies 2532
and derivative works. However, this document itself does not be modified in any way, such 2533
as by removing the copyright notice or references to OASIS, except as needed for the purpose 2534
of developing OASIS specifications, in which case the procedures for copyrights defined 2535
in the OASIS Intellectual Property Rights document must be followed, or as required to 2536
translate it into languages other than English.2537
The limited permissions granted above are perpetual and will not be revoked by OASIS 2538
or its successors or assigns.2539
This document and the information contained herein is provided on an “AS IS” basis 2540
and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 2541
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 2542
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.2543
-->2544
<xsd: schema targetNamespace="http: //docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns: xsd="http: //www.w3.org/2001/XMLSchema" 2545

2546
2547
2548

xmlns: wsu="http: //docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns="http: //docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" 2549
elementFormDefault="qualified" attributeFormDefault="unqualified" version="0.1">2550
 <!-- // Fault Codes /// -->2551
 <xsd: simpleType name="tTimestampFault">2552
 <xsd: annotation>2553
 <xsd: documentation>2554
This type defines the fault code value for Timestamp message expiration.2555
 </xsd: documentation>2556
 </xsd: annotation>2557
 <xsd: restriction base="xsd: QName">2558
 <xsd: enumeration value="wsu: MessageExpired"/>2559
 </xsd: restriction>2560
 </xsd: simpleType>2561
 <!-- // Global attributes //////////////////////////////////// -->2562
 <xsd: attribute name="Id" type="xsd: ID">2563
 <xsd: annotation>2564
 <xsd: documentation>2565
This global attribute supports annotating arbitrary elements with an ID.2566
 </xsd: documentation>2567
 </xsd: annotation>2568
 </xsd: attribute>2569
 <xsd: attributeGroup name="commonAtts">2570
 <xsd: annotation>2571
 <xsd: documentation>2572
Convenience attribute group used to simplify this schema.2573
 </xsd: documentation>2574
 </xsd: annotation>2575
 <xsd: attribute ref="wsu: Id" use="optional"/>2576
 <xsd: anyAttribute namespace="##other" processContents="lax"/>2577

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

71

 </xsd: attributeGroup>2578
 <!-- // Utility types // -->2579
 <xsd: complexType name="AttributedDateTime">2580
 <xsd: annotation>2581
 <xsd: documentation>2582
This type is for elements whose [children] is a psuedo-dateTime and can have arbitrary attributes. 2583
 </xsd: documentation>2584
 </xsd: annotation>2585
 <xsd: simpleContent>2586
 <xsd: extension base="xsd: string">2587
 <xsd: attributeGroup ref="wsu: commonAtts"/>2588
 </xsd: extension>2589
 </xsd: simpleContent>2590
 </xsd: complexType>2591
 <xsd: complexType name="AttributedURI">2592
 <xsd: annotation>2593
 <xsd: documentation>2594
This type is for elements whose [children] is an anyURI and can have arbitrary attributes.2595
 </xsd: documentation>2596
 </xsd: annotation>2597
 <xsd: simpleContent>2598
 <xsd: extension base="xsd: anyURI">2599
 <xsd: attributeGroup ref="wsu: commonAtts"/>2600
 </xsd: extension>2601
 </xsd: simpleContent>2602
 </xsd: complexType>2603
 <!-- // Timestamp header components /////////////////////////// -->2604
 <xsd: complexType name="TimestampType">2605
 <xsd: annotation>2606
 <xsd: documentation>2607
This complex type ties together the timestamp related elements into a composite type.2608
 </xsd: documentation>2609
 </xsd: annotation>2610
 <xsd: sequence>2611
 <xsd: element ref="wsu: Created" minOccurs="0"/>2612
 <xsd: element ref="wsu: Expires" minOccurs="0"/>2613
 <xsd: choice minOccurs="0" maxOccurs="unbounded">2614
 <xsd: any namespace="##other" processContents="lax"/>2615
 </xsd: choice>2616
 </xsd: sequence>2617
 <xsd: attributeGroup ref="wsu: commonAtts"/>2618
 </xsd: complexType>2619
 <xsd: element name="Timestamp" type="wsu: TimestampType">2620
 <xsd: annotation>2621
 <xsd: documentation>2622
This element allows Timestamps to be applied anywhere element wildcards are present,2623
including as a SOAP header.2624
 </xsd: documentation>2625
 </xsd: annotation>2626
 </xsd: element>2627
 <!-- global element decls to allow individual elements to appear anywhere -->2628
 <xsd: element name="Expires" type="wsu: AttributedDateTime">2629
 <xsd: annotation>2630
 <xsd: documentation>2631
This element allows an expiration time to be applied anywhere element wildcards are present.2632
 </xsd: documentation>2633
 </xsd: annotation>2634
 </xsd: element>2635
 <xsd: element name="Created" type="wsu: AttributedDateTime">2636
 <xsd: annotation>2637
 <xsd: documentation>2638
This element allows a creation time to be applied anywhere element wildcards are present.2639
 </xsd: documentation>2640
 </xsd: annotation>2641
 </xsd: element>2642
</xsd: schema>2643

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

72

F. ws-addr-1.0.xsd Schema Listing2644

2645
 <?xml version="1.0" encoding="utf-8"?>2646
<!DOCTYPE xs: schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "http: //www.w3.org/2001/XMLSchema.dtd">2647
<!--2648
 W3C XML Schema defined in the Web Services Addressing 1.0 specification2649
 http: //www.w3.org/TR/ws-addr-core2650

2651
 Copyright © 2005 World Wide Web Consortium,2652

2653
 (Massachusetts Institute of Technology, European Research Consortium for2654
 Informatics and Mathematics, Keio University). All Rights Reserved. This2655
 work is distributed under the W3C® Software License [1] in the hope that2656
 it will be useful, but WITHOUT ANY WARRANTY; without even the implied2657
 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.2658

2659
 [1] http: //www.w3.org/Consortium/Legal/2002/copyright-software-200212312660

2661
 $Id: ws-addr-1.0.xsd 3060 2005-09-23 18: 20: 29Z dchampagne $2662
-->2663
<xs: schema xmlns: xs="http: //www.w3.org/2001/XMLSchema" 2664
 xmlns: tns="http: //www.w3.org/2005/08/addressing" 2665
 targetNamespace="http: //www.w3.org/2005/08/addressing" 2666
 blockDefault="#all" 2667
 elementFormDefault="qualified" 2668
 finalDefault="" 2669
 attributeFormDefault="unqualified">2670
 2671
 <!-- Constructs from the WS-Addressing Core -->2672

2673
 <xs: element name="EndpointReference" type="tns: EndpointReferenceType"/>2674
 <xs: complexType name="EndpointReferenceType" mixed="false">2675
 <xs: sequence>2676
 <xs: element name="Address" type="tns: AttributedURIType"/>2677
 <xs: element name="ReferenceParameters" type="tns: ReferenceParametersType" minOccurs="0"/>2678
 <xs: element ref="tns: Metadata" minOccurs="0"/>2679
 <xs: any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2680
 </xs: sequence>2681
 <xs: anyAttribute namespace="##other" processContents="lax"/>2682
 </xs: complexType>2683
 2684
 <xs: complexType name="ReferenceParametersType" mixed="false">2685
 <xs: sequence>2686
 <xs: any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2687
 </xs: sequence>2688
 <xs: anyAttribute namespace="##other" processContents="lax"/>2689
 </xs: complexType>2690
 2691
 <xs: element name="Metadata" type="tns: MetadataType"/>2692
 <xs: complexType name="MetadataType" mixed="false">2693
 <xs: sequence>2694
 <xs: any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>2695
 </xs: sequence>2696
 <xs: anyAttribute namespace="##other" processContents="lax"/>2697
 </xs: complexType>2698
 2699
 <xs: element name="MessageID" type="tns: AttributedURIType"/>2700
 <xs: element name="RelatesTo" type="tns: RelatesToType"/>2701
 <xs: complexType name="RelatesToType" mixed="false">2702
 <xs: simpleContent>2703
 <xs: extension base="xs: anyURI">2704
 <xs: attribute name="RelationshipType" type="tns: RelationshipTypeOpenEnum" use="optional" 2705
 default="http: //www.w3.org/2005/08/addressing/reply"/>2706
 <xs: anyAttribute namespace="##other" processContents="lax"/>2707
 </xs: extension>2708
 </xs: simpleContent>2709

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

73

 </xs: complexType>2710
 2711
 <xs: simpleType name="RelationshipTypeOpenEnum">2712
 <xs: union memberTypes="tns: RelationshipType xs: anyURI"/>2713
 </xs: simpleType>2714
 2715
 <xs: simpleType name="RelationshipType">2716
 <xs: restriction base="xs: anyURI">2717
 <xs: enumeration value="http: //www.w3.org/2005/08/addressing/reply"/>2718
 </xs: restriction>2719
 </xs: simpleType>2720
 2721
 <xs: element name="ReplyTo" type="tns: EndpointReferenceType"/>2722
 <xs: element name="From" type="tns: EndpointReferenceType"/>2723
 <xs: element name="FaultTo" type="tns: EndpointReferenceType"/>2724
 <xs: element name="To" type="tns: AttributedURIType"/>2725
 <xs: element name="Action" type="tns: AttributedURIType"/>2726

2727
 <xs: complexType name="AttributedURIType" mixed="false">2728
 <xs: simpleContent>2729
 <xs: extension base="xs: anyURI">2730
 <xs: anyAttribute namespace="##other" processContents="lax"/>2731
 </xs: extension>2732
 </xs: simpleContent>2733
 </xs: complexType>2734
 2735
 <!-- Constructs from the WS-Addressing SOAP binding -->2736

2737
 <xs: attribute name="IsReferenceParameter" type="xs: boolean"/>2738
 2739
 <xs: simpleType name="FaultCodesOpenEnumType">2740
 <xs: union memberTypes="tns: FaultCodesType xs: QName"/>2741
 </xs: simpleType>2742
 2743
 <xs: simpleType name="FaultCodesType">2744
 <xs: restriction base="xs: QName">2745
 <xs: enumeration value="tns: InvalidAddressingHeader"/>2746
 <xs: enumeration value="tns: InvalidAddress"/>2747
 <xs: enumeration value="tns: InvalidEPR"/>2748
 <xs: enumeration value="tns: InvalidCardinality"/>2749
 <xs: enumeration value="tns: MissingAddressInEPR"/>2750
 <xs: enumeration value="tns: DuplicateMessageID"/>2751
 <xs: enumeration value="tns: ActionMismatch"/>2752
 <xs: enumeration value="tns: MessageAddressingHeaderRequired"/>2753
 <xs: enumeration value="tns: DestinationUnreachable"/>2754
 <xs: enumeration value="tns: ActionNotSupported"/>2755
 <xs: enumeration value="tns: EndpointUnavailable"/>2756
 </xs: restriction>2757
 </xs: simpleType>2758
 2759
 <xs: element name="RetryAfter" type="tns: AttributedUnsignedLongType"/>2760
 <xs: complexType name="AttributedUnsignedLongType" mixed="false">2761
 <xs: simpleContent>2762
 <xs: extension base="xs: unsignedLong">2763
 <xs: anyAttribute namespace="##other" processContents="lax"/>2764
 </xs: extension>2765
 </xs: simpleContent>2766
 </xs: complexType>2767
 2768
 <xs: element name="ProblemHeaderQName" type="tns: AttributedQNameType"/>2769
 <xs: complexType name="AttributedQNameType" mixed="false">2770
 <xs: simpleContent>2771
 <xs: extension base="xs: QName">2772
 <xs: anyAttribute namespace="##other" processContents="lax"/>2773
 </xs: extension>2774
 </xs: simpleContent>2775
 </xs: complexType>2776

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

74

 2777
 <xs: element name="ProblemHeader" type="tns: AttributedAnyType"/>2778
 <xs: complexType name="AttributedAnyType" mixed="false">2779
 <xs: sequence>2780
 <xs: any namespace="##any" processContents="lax" minOccurs="1" maxOccurs="1"/>2781
 </xs: sequence>2782
 <xs: anyAttribute namespace="##other" processContents="lax"/>2783
 </xs: complexType>2784
 2785
 <xs: element name="ProblemIRI" type="tns: AttributedURIType"/>2786
 2787
 <xs: element name="ProblemAction" type="tns: ProblemActionType"/>2788
 <xs: complexType name="ProblemActionType" mixed="false">2789
 <xs: sequence>2790
 <xs: element ref="tns: Action" minOccurs="0"/>2791
 <xs: element name="SoapAction" minOccurs="0" type="xs: anyURI"/>2792
 </xs: sequence>2793
 <xs: anyAttribute namespace="##other" processContents="lax"/>2794
 </xs: complexType>2795
 2796
</xs: schema>2797

2798

Liberty Alliance Project: Version: 2.0-errata-v1.0
Liberty ID-WSF SOAP Binding Specification

This document is informational only. See [LibertyIDWSFv20Errata] for normative changes

Liberty Alliance Project

75

	Introduction
	Notation and Conventions
	XML Namespaces
	Terminology
	Treatment of Boolean Values
	String and URI Values
	Time Values

	Schema Particulars
	Schema Declarations
	"ID" Attributes
	Status Types
	Status Codes

	SOAP Fault Types

	SOAP Binding
	SOAP Version
	The SOAPAction HTTP Header
	Ordinary ID-* Messages
	ID-* Fault Messages
	SOAP-bound ID-* Messages

	Messaging-specific Header Blocks
	The <wsu: Timestamp> element in the <wsse: Security> Header Block
	The <wsa: MessageID> Header Block
	<wsa: MessageID> Value Requirements

	The <wsa: RelatesTo> Header Block
	The <wsa: To> Header Block
	The <wsa: Action> Header Block
	The <wsa: ReplyTo> Header Block
	The <wsa: FaultTo> Header Block
	The <sbf: Framework> Header Block
	The <Sender> Header Block
	The <TargetIdentity> Header Block
	Messaging Processing Rules
	Constructing and Sending a SOAP-bound ID-* Message
	Receiving and Processing a SOAP-bound ID-* Message

	Examples

	Optional Header Blocks
	The <ProcessingContext> Header Block
	The <ProcessingContext> Type and Element
	<ProcessingContext> Header Block Semantics and Processing Rules
	<ProcessingContext> Header Block Semantics
	Processing Context Facet URIs: PrincipalOnline, PrincipalOffline, and Simulate
	Defining New Processing Context Facet URIs
	Sender Processing Rules
	Receiver Processing Rules

	The <Consent> Header Block
	The <Consent> Type and Element

	The <CredentialsContext> Header Block
	Overview
	CredentialsContext Type and Element
	CredentialsContext Example
	Processing Rules
	Sender Processing Rules
	Receiver Processing Rules

	The <EndpointUpdate> Header Block
	Overview
	EndpointUpdate Type and Element
	EndpointUpdate Examples
	Processing Rules for the EndpointUpdate header
	Sender Processing Rules
	Receiver Processing Rules

	Processing Rules for the EndpointUpdated SOAP Fault
	Sender Processing Rules
	Receiver Processing Rules

	The <Timeout> Header Block
	Overview
	Timeout Type and Element
	Timeout Example
	Processing Rules
	Receiver Processing Rules

	The <UsageDirective> Header Block
	Overview
	UsageDirective Type and Element
	Usage Directive Examples
	Processing Rules
	Sender Processing Rules
	Receiver Processing Rules

	The <ApplicationEPR> Header Block
	The <UserInteraction> Header Block
	Overview
	UserInteraction Element
	UserInteraction Examples
	Processing Rules
	UserInteraction Faults

	Cross-principal interactions

	The RedirectRequest Protocol
	RedirectRequest Element
	Processing Rules

	RedirectRequest Protocol
	Step 1: WSC Issues Normal ID-WSF Request
	Step 2: WSP Responds with <RedirectRequest>
	Step 3: WSC Instructs User Agent to Contact the WSP
	Step 4: WSP Interacts with User Agent
	Step 5: WSP Redirects User Agent Back to WSC
	Step 6: User Agent Requests ReturnToURL from WSC
	Step 7: WSC Resends Message
	Steps 8: WSP sends response
	Steps 9: WSC sends HTTP response to User Agent

	Security Considerations
	Acknowledgements

