Liberty Alliance Project: Version: 2.1

[]
B

PROJECT

Liberty ID-WSF Data Services Template

Version: 2.1

Editors:
Sampo Kelloméki, Symlabs, Inc.
Jukka Kainulainen, Nokia Corp.

Contributors:

Robert Aarts, Hewlett-Packard

Rajeev Angal, Sun Microsystems, Inc.

Conor Cahill, America Online, Inc.

Carolina Canales-Valenzuela, Ericsson

Darryl Champagne, IEEE-ISTO

Andy Feng, America Online, Inc.

Gael Gourmelen, France Télécom

Jeff Hodges, NeuStar, Inc.

Lena Kannappan, France Télécom

John Kemp, Nokia Corporation

Rob Lockhart, IEEE-ISTO

Paul Madsen, NTT

Aravindan Ranganathan, Sun Microsystems, Inc.
Matti Saarenpéé, Nokia Corporation

Jonathan Sergent, Sun Microsystems, Inc.
Lakshmanan Suryanarayanan, America Online, Inc
Greg Whitehead, Hewlett-Packard

Abstract:
The Data Services Template provides protocols, schema and processing rules for the query, creation, deletion, and

modification of data objects and their attributes exposed by a data service using the Liberty Identity Web Services
Framework (ID-WSF). Some guidelines and common XML attributes and data types for data services are defined.

Filename: liberty-idwsf-dst-v2.1.pdf

Liberty Alliance Project

1

a s~ wnN

© 00 N O

10

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Notice

This document has been prepared by Sponsors of the Liberty Alliance. Permission is hereby granted to use the
document solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works
of this Specification. Entities seeking permission to reproduce portions of this document for other uses must contact
the Liberty Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this document may require licenses under third party intellectual property
rights, including without limitation, patent rights. The Sponsors of and any other contributors to the Specification are
not and shall not be held responsible in any manner for identifying or failing to identify any or all such third party
intellectual property rightsThis Specification is provided "AS IS", and no participant in the Liberty Alliance

makes any warranty of any kind, express or implied, including any implied warranties of merchantability,
non-infringement of third party intellectual property rights, and fithess for a particular purpose. Implementers

of this Specification are advised to review the Liberty Alliance Project’s weldite: (/www.projectliberty.org/for
information concerning any Necessary Claims Disclosure Notices that have been received by the Liberty Alliance
Management Board.

Copyright © 2006 Adobe Systems; America Online, Inc.; American Express Company; Amsoft Systems Pvt Ltd.;
Avatier Corporation; Axalto; Bank of America Corporation; BIPAC; BMC Software, Inc.; Computer Associates
International, Inc.; DataPower Technology, Inc.; Diversinet Corp.; Enosis Group LLC; Entrust, Inc.; Epok, Inc.;
Ericsson; Fidelity Investments; Forum Systems, Inc.; France Télécom; French Government Agence pour le
développement de I'administration électronique (ADAE); Gamefederation; Gemplus; General Motors; Giesecke &
Devrient GmbH; GSA Office of Governmentwide Policy; Hewlett-Packard Company; IBM Corporation; Intel
Corporation; Intuit Inc.; Kantega; Kayak Interactive; MasterCard International; Mobile Telephone Networks (Pty)
Ltd; NEC Corporation; Netegrity, Inc.; NeuStar, Inc.; Nippon Telegraph and Telephone Corporation; Nokia
Corporation; Novell, Inc.; NTT DoCoMo, Inc.; OpenNetwork; Oracle Corporation; Ping Identity Corporation;
Reactivity Inc.; Royal Mail Group plc; RSA Security Inc.; SAP AG; Senforce; Sharp Laboratories of America,
Sigaba; SmartTrust; Sony Corporation; Sun Microsystems, Inc.; Supremacy Financial Corporation; Symlabs, Inc.;
Telecom ltalia S.p.A.; Telefénica Mdviles, S.A.; Trusted Network Technologies; UTI; VeriSign, Inc.; Vodafone
Group Plc.; Wave Systems Corp. All rights reserved.

Liberty Alliance Project

Licensing Administrator

c/o IEEE-ISTO

445 Hoes Lane

Piscataway, NJ 08855-1331, USA
info@projectliberty.org

Liberty Alliance Project

2

http://www.projectliberty.org/

34

35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Contents
Lo INtrOUCTION . ..o e e 5
L0 NOALON .. e 5
1.2. Liberty CONSIAErations.ot 5
1.3, NBIMESPACES. . . .o ettt et e e e e e 5
1.4. Applying DST to Define ServiCes. e 6
1.5. Applying the DST Reference Model. e 6
2. Data Model 8
2.1. Guidelines for SChemata. 8
2.2. EXIENdING @ SEIVICEottt 8
2.3. Time Values and Synchronization e 9
2.4. Common XML AtrDULES.o 9
2.4.1. ThecommonAttributes ~ XML Attribute Group ... 10
2.4.2. ThdeafAttributes XML Attribute Groupoovnii 10
2.4.3. ThdocalizedLeafAttributes XML Attribute Group ... 11
2.4.4. Individual Common XML attributes 12
2.5. CommON Data TYPESttt 12
3. MESSagE INtEaCE. . .. o 14
3.1. Multiple Occurrences of Request Or RESPONSE.o vviii i 14
3.2. Status and Fault REPOItINGot e 14
3.2.1. Top LevekStatus>Element 15
3.2.2. Second LevedStatus>Codesottt 16
3.3. ThetimeStamp XML Attribute 17
3.4, General Error Handlingo 18
3.5, LINKING WIthid S ..o 18
BB, RESOUICES . . .o 18
B 7. SIECHION. . .o 19
3.8. Common Processing Rules for Selection.o . 20
3.8.1. Processing Rules for theedefined XML Attribute, 20
3.8.2. Processing Rules for thbjectType XML Attribute 21
3.8.3. Processing Rules for th&elect>Element i 21
3.9. Requesting Meta and Additional Data. ... 21
3.10. Common Processing Rules for Requesting Meta and Additional Data................... 22
A, QUEIYING Data. . ..ottt 24
4.1, The<QUEINY> EIBMENT . ..o e e e e 24
4.1.1. The<Testltem>Element e 25
4.1.2. The<Queryltem> EIemMeNt e 26
4.0.3. Pagination.o 27
4.2. The<QUEryResSpONSE EIEMENt e e e e 28
4.3. <ResultQuery>or <Queryltem> Conditioned by<Testltem> 28
4.4, Processing RUIES fOr QUETIES.ttt 29
4.4.1. Processing Rules for MultiptQueryltem> Elements 29
4.4.2. Processing Rules fgSelect>Element 29
4.4.3. Sorting Query ResUItS. 30
4.4.4. Pagination of Query ReSUItS. 30
4.4.5. Effect of Access and Privacy Policies. ... 32
4.4.6. Querying Changes Since Specified Timeo i, 32
4.4.7. Requesting Common XML Attributes.o i 34
A D EXAMPIES . . 35
5. Creating Data OB jeCtSo 42
5.1.<Create>Elemento 42
5.2.<CreateResponSeElement 42
5.3. Processing Rules for Creating Data Objects. ... 43

Liberty Alliance Project

3

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

87 5.3.1. Multiple<Createltem>Elements ... e 43
88 5.3.2. Only One Type of Data Object pe€Createltem> 43
89 5.3.3. HandlinggommonAttributes andleafAttributes upon Creation................. 43
90 5.3.4. WSC Might Mot Be Allowed to Add Certain Dataor AnyData..................... 44
91 5.3.5. WSP May Place Some Restrictions for the data ltIsHosting 44
92 6. Deleting Data ObjeCTSo 46
93 B.1. <Delete>ElemMENt 46
94 6.2.<DeleteResponseElement 46
95 6.3. Processing Rules for Deletion. 46
96 6.3.1. Supporting MultipleDeleteltem>Elements 46
97 6.3.2. Only One Type of Data Object May Be Deleted with Gibeleteltem> 47
98 6.3.3. Avoiding Deletion of Data if It Has Changed In-between 47
99 6.3.4. WSC Might Not Be Allowed to Delete Certainor AnyData. 47
100 7. MOIfyING DaAtao 49
101 7.1.<Modify> Element 49
102 7.2.<ModifyResponse>Element 50
103 7.3. Processing Rules for Modifications. ... 50
104 7.3.1. Multiple<Modifyltem> Elements. ... 50
105 7.3.2. What Exactly ISModified 51
106 7.3.3. HandlingcommonAttributes andleafAttributes inModifyl 52
107 7.3.4. Accounting for ConcurrentUpdates. ...t 52
108 7.3.5. WSC Might Not Be Allowed to Make Only Certain or Any Modifications. 53
109 7.3.6. WSP May Impose Some Restrictions for the Data It IsHosting 53
110 7.4. Examples of Modifications oo 53
111 8. WSF-1.1 Compatibility e 56
112 0. ACHIONS ..ttt 57
113 10. Checklist for Service SPecCifiCationSttt e 58
114 10, SCREMALA.ot e 61
115 11.1. DST Reference Model Schema. e 61
116 11.2. DST ULility SChem@.o e 64
117 REIEIENCES . . 68

Liberty Alliance Project

4

118

119
120
121

122
123
124
125
126

127
128

129
130
131
132
133
134

135
136
137
138

139

140
141
142

143
144

145
146

147

148

149
150
151
152

153

154

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1. Introduction

This specification provides protocols for the creation, query, modification, and deletion (a.k.a. "CRUD") of data
attributes, exposed by a data service, related to a Principal. Some guidelines, common XML attributes and data types
are defined for data services.

This specification does not give a strict definition as to which services are data services and which are not, i.e., to

which services this specification is targeted. A data service, as considered by this specification, is a web service that
supports the storage and update of specific data attributes regarding a Principal. A data service might also expose
dynamic data attributes regarding a Principal. Those dynamic attributes may not be stored by an external entity, but

the service knows or can dynamically generate their values.

An example of a data service would be a service that hosts and exposes a Principal’s profile information (such as name,
address and phone number). An example of a data service exposing dynamic attributes is a geolocation service.

The data services using this specification can also support other protocols than those specified here. They are not
restricted to support just querying and modifying data attributes, but they can also support actions (e.g., making
reservations). Also some services might support only querying data without supporting modifications and in some
cases there could be services supporting only modifications without supporting querying, i.e., other parties are allowed
to give new data, but not query existing. The specification provides many features and data services must choose which
features to use and how to use them.

This specification has three main parts. First some common attributes, guidelines and type definitions to be used by
different data services are defined and the XML schema for those is provided. Second, the methods of accessing the
data are provided, including an XML schema for the Data Services Template (DST) protocols. Finally, a checklist is
given for writing services on top of the DST.

1.1. Notation

When capitalized, the key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT," "SHOULD,"
"SHOULD NOT," "RECOMMENDED," "MAY," and "OPTIONAL" in this specification are to be interpreted as
described inRFC2119. When these words are not capitalized, they are meant in their natural-language sense.

This specification uses the following typographical conventions in tellement> <ns:ForeignElement>
attribute , DataType , OtherCode .

For readability, when an XML Schema type is specified toxi®oolean , this document discusses the values as
"true "and 'false "ratherthan the "1" and "0" which will exist in the document instances.

Definitions for Liberty-specific terms can be found kiljertyGlossary.

1.2. Liberty Considerations
This specification contains enumerations of values that are centrally administered by the Liberty Alliance Project.
Although this document may contain an initial enumeration of approved values, implementers of the specification

MUST implement the list of values whose location is currently specifiedLiibeftyRed according to any relevant
processing rules in both this specification ahibértyRed.

1.3. Namespaces

The namespaces described in table 1 are used.

Liberty Alliance Project

5

155

156

157
158

159

160

161

162

163
164
165

166

167
168
169
170
171

172
173
174

175
176
177
178
179

181
182

183

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Table 1. Normatively referenced XML namespaces

Prefix URI Description

dst: urn:liberty:dst:2006-08 Target namespace of DST utility schema.

dstref: |urn:liberty:dst:2006-08:ref Target namespace of DST reference model.

xml: http://www.w3.org/XML/1998/namespace W3C XML [XML]

XS: http://www.w3.0rg/2001/XMLSchema W3C XML Schema Definition Languagde
[Schemal-p

ds: urn:liberty:disco:2006-08 Liberty ID-WSF Discovery Service jberty-
Discq

lu: urn:liberty:util:2006-08 Li erty Utility schema

1.4. Applying DST to Define Services

In order to define a service the service specification is expected to reference DST for common processing rules and
utility schema. Where common definitions are not appropriate, the service specification is expected to

a.Answer every question specified in the check list, Seetion 10

b. Waive inappropriate processing rules

c. Define additional processing rules

d. Alter DST SHOULD statements to either MUST or MUST NOT if appropriate

e.Define service schema in terms of DST utility schema. It is RECOMMENDED that the schema mimic the
Reference Model, se®ection 11.1las appropriate. The service schema is likely to define at AgpagtataType
and possibly other service specific aspects.

1.5. Applying the DST Reference Model

The DST reference model, s€ection 11.1depicts a prototypical service schema. The dstref: namespace would be
substituted by the service specific namespace. Since the service is fully defined by its own independent schema,
it is free to redefine all aspects as it sees fit. However, to promote common approach to data services, it is
RECOMMENDED that the service follow this reference model wherever there is no specific reason to diverge from
it.

In particular, when this document specifies processing rules, the method names, s@rbais>, <Query>, etc.,
specified by the reference model are used. If service schema chooses other method names, it needs to specify
correspondence to reference model method names so that applicable processing rules can be determined.

<xs:element name="Create" type="dstref:CreateType"/>

<xs:element name="CreateResponse" type="dstref:CreateResponseType"/>
<xs:element name="Query" type="dstref:QueryType"/>

<xs:element name="QueryResponse" type="dstref:QueryResponseType"/>
<xs:element name="Modify" type="dstref:ModifyType"/>

<xs:element name="ModifyResponse" type="dstref:ModifyResponseType"/>
<xs:element name="Delete" type="dstref:DeleteType"/>

<xs:element name="DeleteResponse" type="dstref:DeleteResponseTy pe"/>

Figure 1. Reference Definitions of Methods

Liberty Alliance Project

6

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

184 The reference model provides dummy definitions of some important extension points. Typical service schema will
185 provide its own definitions for these.

186 <xs:complexType name="SelectType">

187 <xs:simpleContent>
188 <xs:extension base="xs:string"/>
189 </xs:simpleContent>

190 </xs:complexType>
191 <xs:complexType name="TestOpType">

192 <xs:simpleContent>
193 <xs:extension base="xs:string"/>
194 </xs:simpleContent>

195 </xs:complexType>
196 <xs:complexType name="SortType">

197 <xs:simpleContent>
198 <xs:extension base="xs:string"/>
199 </xs:simpleContent>

200 </xs:complexType>
201 <xs:complexType name="AppDataType">

202 <xs:simpleContent>

203 <xs:extension base="xs:string"/>

204 </xs:simpleContent>

205 </xs:complexType>

206

207 Figure 2. DST Parameterization Points

Liberty Alliance Project

7

208

209
210
211
212
213
214
215

216
217
218
219
220
221
222
223

224
225
226
227
228

229
230
231

232

233
234

235

236
237

238
239
240

241
242
243
244

245
246
247
248

249

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2. Data Model

A data service provides access to the data. The data consists of one or more objects and there can be multiple objects
of same type. For each different type of a data service the supported objects must be specified. One type of data
service might support only one object, another might support multiple objects of same type and a third might support
multiple types of objects and multiple instances of objects of the same type. For each service type an XML schema
must be specified. There can also be multiple XML schemata for one service type as different data objects might be in
different schemata. The XML schema for a service type defines the data that the service type can host and the structure
of this data. SeelfibertyDiscd for more information about service types.

A data object has a root element which contains data in subelements. The name of this root element is used as the
object type identifier. Individual objects can be accessed by defining the object type and selecting from the objects

of that type the right one. Selecting can be done using an identifier, which is unique among those objects, using
some data values object contains or using some service type specific parameters, which give enough information to a
service so that it can calculate, what data the requestor wants to access. Individual data elements inside objects can
also be accessed separately, e.g., from a contact card the name can be queried separately. The specification for each
service type defines in details, how the selecting is done. This document gives common rules, but the actual selection
mechanism is specified in the service specifications.

The data may be stored in implementation specific ways, but will be exposed by the service using the XML schema
specified both in this document, and that of the defined service type. This also means that the XML document defined
by the schema is a conceptual XML document. Depending upon the implementation, there may be no XML document
that matches the complete conceptual document. The internal storage of the data is separate and distinct from the
document published through this model.

The schemata for different service types may have common characteristics. This section describes the commonalities
specified by the Data Services Template, provides schema for common XML attributes and data types, and also gives
some guidelines.

2.1. Guidelines for Schemata

The schemata of different data services SHOULD follow guidelines defined here. The purpose of these guidelines is
to make the use of the Data Services Template easier when defining and implementing services.

1.Each data attribute regarding the Principal SHOULD be defined as an XML element of a suitable type.

2. XML attributes SHOULD be used only to qualify the data attribute defined as XML elements and not contain the
actual data values related to the Principal.

3.An XML element SHOULD either contain other XML elements or actual data value. An XML element SHOULD
NOT havemixed content, i.e., both a value and sub-elements. Also complex sipeandchoice SHOULD
NOT be used.

4.0nce a data attribute has been published in a specification for a service type, its syntax and semantics MUST not
change. If evolution in syntax or semantics is needed, any new version of a data attribute MUST be assigned a
different name, effectively creating a new attribute with new semantics so that it does not conflict with the original
attribute definition.

5. All elements MUST be defined as global elements, when they can be requested individually. When elements with
complex type are defined, references to global elements are used. The reason for this guideline is that the XML
Schema for a service does not only define the syntax of the data supported by the service but also the transfer
syntax. In many cases it should be possible to query and modify individual elements.

6. The type definitions provided by the XML Schema SHOULD be used, when they cover the requirements.

Liberty Alliance Project

8

250

251
252
253

254
255
256

257
258

259
260
261
262

263
264
265
266
267
268
269

270

271
272
273

274

275
276
277

278
279
280

281
282
283
284

285

286
287
288
289
290
201

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2.2. Extending a Service

A service, defined by its specification and schema, MAY be extended in different ways. What types of extensions
are supported in practice MUST be specified individually by each service specification, or agreed locally between the
WSC and WSP.

1. Animplementation MAY add new elements and XML attributes to an already specified object or it may add totally
new objects. The new data MUST use its own namespace until it is added to the official service specification and
schema of the service type.

2.When new features for a service are specified (e.g., new elements), new keywords SHOULD be specified for
indicating the new features using tk®ption> element (seelfibertyDiscd for more information).

3.New values for enumerators MAY be specified subsequent to the release of a specification document for a
specific service type. The specification for a service type MUST specify the authority for registering new official
enumerators (whether that authority is the specification itself, or some external authority). For specification done
by Liberty Alliance, seellibertyRed.

4.Elements defined in the XML schema for a service type MAY contairesiany> element to support arbi-
trary schema extension. When tkgs:any> elements are in the schema, an implementation MAY support
this type of extension, but is not required to. Thes:any> elements SHOULD always be put insie&x-
tension> elements. If an implementation does support this type of schema extension, then it MAY register
the urn:liberty:dst:can:extend discovery option keyword. When a service holds new data, which is not defined
in the schema for the service type but is stored using this kind of support for extensions, it MAY register the
urn:liberty:dst:extend discovery option keyword.

The <Extension> Element

All messages have arExtension>element for services which need more parameters. <thdension> element
SHOULD NOT be used in a message, unless its content and related processing rules have been specified for the
service. If the receiving party does not support the use ckEension>element, it MUST ignore it.

2.3. Time Values and Synchronization

Some of the common XML attributes are time values. All Liberty time values have thel&ygEme , which is built
in to the W3C XML Schema Data Types specification. Liberty time values MUST be expressed in the UTC (a.k.a.
GMT or the "Zulu" time) form, indicated by a "Z" immediately following the time portion of the value.

Liberty requestors and responders SHOULD NOT rely on other applications supporting time resolution finer than sec-
onds, as implementations MAY ignore fractional second components specified in timestamp values. Implementations
MUST NOT generate time instants that specify leap seconds.

The timestamps used in the DST schemata are only for the purpose of data synchronization and no assumptions should
be made as to clock synchronization. As clocks might not be well synchronized, a WSC SHOULD check the general
timestamps returned in response messages and compare those to its own clock. This helps a WSC to better evaluate
different timestamps attached to different data items.

2.4. Common XML Attributes

The XML elements defined in the XML schemata for the services either contain data values or other XML elements.
So an XML element is either a leaf element or a container. The containers MUST NOT have any other data content
than other XML elements and possible qualifying XML attributes. To contrastettfelements do not contain other

XML elements. These leaf elements can be further divided into two different categories: normal and localized. The
normal leaf elements typically contain a string or URI constant. The localized leaf elements contain text using a local
writing system.

Liberty Alliance Project

9

292
293
294
295
296
297
298
299

300
301
302
303

305
306

308
309
310

312
313

315
316
317

319
320
321
322

323

324

325

326
327
328
329
330
331
332
333
334
335
336

337
338
339
340
341
342
343

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Both leaf and container XML elements can have service-specific XML attributes, but there are also common XML
attributes supplied for use by all data services. These common XML attributes are technical attributes, which are
usually created by the Web Service Provider (WSP) hosting a data service (for more deteilectiee J. These
technical attributes are not mandatory for all data services, but if they are implemented, they MUST be implemented
in the way described in this document. Each service should specify separately if one or more of these common XML
attributes are mandatory or optional for that service. In addition to the common XML attributes, we define attribute
groups containing these common XML attributes. There are three attribute graupsionAttributes mainly
targeted for container elements and for the leaf elemeaf&ttributes andlocalizedLeafAttributes

<xs:attribute name="id" type="lu:IDType"/>
<xs:attribute name="modificationTime" type="xs:dateTime"/>
<xs:attributeGroup name="commonAttributes">
<xs:attribute ref="dst:id" use="optional"/>
<xs:attribute ref="dst:modificationTime" use="optional"/>
</xs:attributeGroup>
<xs:attribute name="ACC" type="xs:anyURI"/>
<xs:attribute name="ACCTime" type="xs:dateTime"/>
<xs:attribute name="modifier" type="xs:string"/>
<xs:attributeGroup name="leafAttributes">
<xs:attributeGroup ref="dst:commonAttributes"/>
<xs:attribute ref="dst:ACC" use="optional"/>
<xs:attribute ref="dst:ACCTime" use="optional"/>
<xs:attribute ref="dst:modifier" use="optional"/>
</xs:attributeGroup>
<xs:attribute name="script" type="xs:anyURI"/>
<xs:attributeGroup name="localizedLeafAttributes">
<xs:attributeGroup ref="dst:leafAttributes"/>
<xs:attribute ref="xml:lang" use="required"/>
<xs:attribute ref="dst:script" use="optional"/>
</xs:attributeGroup>
<xs:attribute name="refreshOnOrAfter" type="xs:dateTime"/>
<xs:attribute name="destroyOnOrAfter" type="xs:dateTime"/>

Figure 3. DST Common XML Attributes

2.4.1. The commonAttributes XML Attribute Group
There are only two common XML attributes:

id (optional) Theid is a unique identifier within a document. It can be used to refer uniquely to an element,
especially when there may be several XML elements with the same name. If the schema for
a data service does not provide any other means to distinguish between two XML elements
and this functionality is needed, tite XML attribute MUST be used. It is only meant for
distinguishing XML elements within the same conceptual XML document. It MUST NOT be
a globally unique identifier, because that would create privacy problems. An implementation
MAY set specific length restrictions ad XML attributes to enforce this. The value of the
id XML attribute SHOULD stay the same when the content of the element is modified so the
same value of thiel XML attribute can be used when querying the same elements at different
times. Theid XML attribute MUST NOT be used for storing any data and it SHOULD be
kept short.

modificationTime (optional) The modificationTime specifies the last time that the element was modified.
Modification includes changing either the value of the element itself, or any sub-element. So
the time of the modification MUST be propagated up all the way to the root element, when
container elements have thedificationTime XML attribute. If the root element has the
modificationTime XML attribute, it states the time of the latest modification. Note that a
data service may have thedificationTime XML attribute used only in leaf elements or
not even for those as it is optional.

Liberty Alliance Project

10

344

345
346

347
348

349
350
351
352
353

354

355
356
357
358

359
360

361
362
363
364

365
366

367
368
369

370
371

372
373

374
375
376
377

378

379
380
381
382
383

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2.4.2. The leafAttributes XML Attribute Group

This group includes theommonAttributes XML attribute group and defines three more XML attributes for leaf
elements (XML elements not containing other XML elements):

modifier ~ (optional) The modifier is the ProvideriD of the service provider which last modified the data
element.

ACC(optional) The acronymACCstands forAttribute Collection Contextvhich describes the context (or
mechanism) used in collecting the data. This might give useful information to a requestor,
such as whether any validation has been done. Atealways refers to the current data
values, so whenever the value of an element is changed, the valueraf@neust be updated
to reflect the new situation. TheCCis of typeanyURI .

The following are defined values for theCXML attribute:

urn:liberty:dst:acc:unknown This means that there has been no validation, or the values are
just voluntary input from the user. THRCCMAY be omitted in the
message exchange when it has this value, as this value is equivalent
to supplying ncACCXML attribute at all.

urn:liberty:dst:acc:incentive There has been some incentive for user to supply correct input
(such as a gift sent to the user in return for their input).

urn:liberty:dst:acc:challengeA challenge mechanism has been used to validate the col-
lected data (e.g., an email sent to address and a reply received or
an SMS message sent to a mobile phone number containing a WAP
URL to be clicked to complete the data collection)

urn:liberty:dst:acc:secondarydocumenfEhe value has been validated from secondary doc-
uments (such as the address from an electric bill).

urn:liberty:dst:acc: primarydocumentsThe value has been validated from primary docu-
ments (for example, the name and identification number from a
passport).

Other values are allowed f@tCG but this specification normatively defines usage only for
the values listed above.

When theACCis included in the response message, the response SHOULD be signed by the
service provider hosting the data service.

ACCTime (optional) This defines the time that the value for th@CXML attribute was given. Note that this can be
different from themodificationTime . The ACCcontains information that may be related
to the validation of the entry. Such validation might happen later than the time the entry was
made, or modified. The entry can be validated more than once.

2.4.3. The localizedLeafAttributes XML Attribute Group

This XML attribute group includes theafAttributes XML attribute group and defines two more XML attributes

to support localized data. UTF-8 is capable of carrying the data in the right format, but it is difficult to access out of
the XML elements having the same name the one containing the information in the right language and writing system.
These XML attributes should be used when multiple languages can be used and it is important to be able to get the
data in the right language and writing system.

Liberty Alliance Project

11

384
385
386

387
388
389
390

391

392
393
394
395

396
397
398
399
400
401
402

403
404
405
406

407

408
409
410
411
412

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

xml:lang (required) This defines the language used for the value of a localized leaf element. Whelothé
izedLeafAttributes> XML attribute group is used for an element, this is a mandatory XML
attribute.

script ~ (optional) Sometimes the language does not define the writing system used. In such cases, this XML
attribute defines the writing system in more detail. This specification defines the following
values for this XML attribute: urn:liberty:dst:script:kana and urn:liberty:dst:script:kaniji.
See LibertyRed where to find additional values, if any, and how to specify more values.

2.4.4. Individual Common XML attributes

In addition to the previous XML attribute groups a couple of more common XML attributes are defined and available
for services. The XML attributes in XML attribute groups can also be used individually without taking the whole
attribute group into use, but the following XML attributes are assumed to be seldom used and so they are not included
in any of the XML attribute groups.

refreshOnOrAfter A WSC may cache the information in the element and if it chooses to do so, it SHOULD
refresh the data from the WSP if it attempts to use the data beyond the time specified. If the
data is not refreshed (for whatever reason) a WSC MAY continue to use it. This parameter
does NOT place an obligation upon the WSP to keep the value of the data static during this
timespan, so it is possible (and in some cases likely) that the contents of the element will
change during the specified period. WSCs that require timely data should request the most
up to date data when they need it rather than caching the data.

destroyOnOrAfter Even if a WSC has not been able to refresh the information, it SHOULD destroy it, if the
element containing the information has the XML attribdéstroyOnOrAfter ~ and the time
specified by that attribute has come. The information most probably is so out of date that it
is unusable.

2.5. Common Data Types

The type definitions provided by XML schema can not always be used directly by Liberty ID-WSF data services, as
they lack the common XML attributes noted above. The DST data type schema provides types derived from the XML
Schema (KML]) data type definitions with those common XML attributes added to the type definitions. Please note
that for strings there are two type definitions, one for localized elements and another for elements normalized using
the Latin 1 character set. The common data type definitions are depidteglire 4

Liberty Alliance Project

12

413

415
416
417
418
419
420

422
423
424

426
427
428
429
430
431

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

455

Liberty Alliance Project:
Liberty ID-WSF Data Services Template

<xs:complexType name="DSTLocalizedString">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attributeGroup ref="dst:localizedLeafAttributes"/>
</xs:extension>
</xs:simpleContent>
<Ixs:complexType>
<xs:complexType name="DSTString">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attributeGroup ref="dst:leafAttributes"/>
</xs:extension>
</xs:simpleContent>
<Ixs:complexType>
<xs:complexType name="DSTInteger">
<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attributeGroup ref="dst:leafAttributes"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="DSTURI">
<xs:simpleContent>
<xs:extension base="xs:anyURI">
<xs:attributeGroup ref="dst:leafAttributes"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="DSTDate">
<xs:simpleContent>
<xs:extension base="xs:date">
<xs:attributeGroup ref="dst:leafAttributes"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="DSTMonthDay">
<xs:simpleContent>
<xs:extension base="xs:gMonthDay">
<xs:attributeGroup ref="dst:leafAttributes"/>
</xs:extension>
</xs:simpleContent>
<I/xs:complexType>

Figure 4. General Data Types with DST Attributes

Liberty Alliance Project

13

Version: 2.1

456

457
458
459
460
461

462
463

464

465
466
467

468
469
470
471
472

473
474
475

476

478
479
480
481
482
483

485
486
487

489
490

491

492

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

3. Message Interface

This specification defines number of protocols for data services. These protocols rely mainly on a request-response
message exchange pattern. The only exceptions are the notification messages, which might not get any response. The
messages specified in this document are carried in the SOAP body. No additional content is specified for the SOAP
header in this document, but implementers of these protocols MUST follow the rules defihéokeinyfSOAPBInd-

ing], including passing credentials or target ID that allows the resource to be accessed to be determined.

The following table lists the protocol elements specified by this specification (with respect to the DST reference
model).

Table 2. Requests and Responses

Request by a WSC Response by a WSP
<Create> <CreateResponse>
<Delete> <DeleteResponse>
<Query> <QueryResponse>
<Modify> <ModifyResponse>

<Create>and<Delete>are used to create new objects and delete existing objects. The data inside an object can be
modified using<Modify>, this includes deleting individual data items inside an object. Whole objects or data inside
objects can be queried usirQuery>.

The messages for different protocols have common features, XML attributes and elements. These common issues are
discussed in this chapter and the actual messages are specified in the following chapters. Together with common parts
the related processing rules are also defined. In the text, especially in the processing rileguestElemeig used

to replace the actual request element in many cases. These parts MUST be read as if indteaple$tElemettitere

would be any of the following elementsCreate>, <Delete> <Query> or <Modify>.

TheResponseElemeistused instead of the actual response element in many places. Those parts MUST be read as if
instead of &ResponseElemetitere would be any of the following elementCreateResponse><DeleteResponse>
<QueryResponse>or <ModifyResponse>

<xs:complexType name="RequestType">
<xs:sequence>
<xs:element ref="lu:Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute ref="lu:itemID" use="optional"/>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
<xs:complexType name="DataResponseBaseType">
<xs:complexContent>
<xs:extension base="lu:ResponseType">
<xs:attribute name="timeStamp" use="optional" type="xs:dateTime"/>
</xs:extension>
</xs:complexContent>
<Ixs:complexType>

Figure 5. Commonality of Requests and Responses

3.1. Multiple Occurrences of Request or Response

Liberty Alliance Project

14

493
494
495

496

497
498
499
500
501

502

503
504
505
506

507
508

509
510
511

512
513
514

515

516
517
518
519
520

521
522
523
524

525

526
527
528
529
530

531
532

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

If service specification permits, all request and response elements MAY occur multiple times in the message (e.g.,
the SOAP<body> if the SOAP binding is used). This mechanism can serve as a batch optimization or the service
specification MAY choose to attach some transactional semantics to this construct.

3.2. Status and Fault Reporting

Two mechanism are defined to report back to the requestor whether the processing of a request was successful or not
or something in betweenLipertySOAPBInding defines the ID-* Fault message, which is used to convey processing
exception. An ordinary ID-* Message carrying normal response is used to report back application statuses including
normal error conditions, when an application has detected an error condition as part of the normal processing, e.g.,
processing according to the processing rules specified in this document.

From the Data Service Template point of view there are the following cases in which the ID-* Fault Message is used.

1.When a WSP does not recognize &gquestElemein the SOAP Body, it MUST return an ID-* Fault Message
and useDsStarMsgNotUnderstood as the value of theode XML attribute as specified byLjbertySOAP-
Binding]. This fault MAY also be applied to situations where implementation or deployment has permanently
chosen not to support certain type of request (e.g., read only service).

2.In the same way, a WSC that receives an empty or malformed notification MUST return an ID-* Fault Message
and usdDStarMsgNotUnderstood as the value of theode XML attribute.

3.1f a WSP based on identifying the requesting party notices that the requesting party is not allowed to make any
requests, it MUST return an ID-* Fault Message andAts@nNotAuthorized as the value of theode XML
attribute.

4. A receiving party may also encounter an unexpected error due to which it fails to handle the message body. In
that case it MUST return an ID-* Fault Message and UsexpectedError as the value of theode XML
attribute.

A service specification MAY define more cases in which ID-* Fault Message is used.

Even if the processing of some parts of a message body fails, a WSP SHOULD always try to process the message
body as well as it can according the specified processing rules and return normal response message indicating the failed
parts in returned status codes (Smxtion 3.2.2as one message may contain multiple task requests and succeeding

in individual tasks is valuable, unless processing rules specify that after the first failed part the whole message should
fail.

One RequestElememhay contain number of individual task request (e.g., insid®aery> there can be multiple
<Queryltem> elements). So, after failing to complete one requested task, there could be a number of other tasks
requested in the same message and a WSP SHOULD try to complete those unless service specific processing rules
specify otherwise.

3.2.1. Top Level <Status> Element

A ResponseElemeptement contains one top levebtatus>element to indicate whether or not the processing of

a RequestElemetitas succeeded. Th&Status>element is included from the Liberty Utility Schema. <Status>
element MAY contain othekStatus>elements, providing more detailed information. <&tatus>element has a

code XML attribute, which contains the return status as a string. The local definition of these codes is specified in this
document.

Thecode XML attribute of the top levekStatus>element MUST contain one of the following valueg, Partial
or Failed

Liberty Alliance Project

15

533
534
535

536
537
538
539
540
541
542
543

544
545
546
547

548
549
550
551
552

553
554
555
556

557
558
559
560
561

562

563

564
565

567
568
569
570
571
572
573
574
575
576
577
578
579

581
582
583
584
585

Liberty Alliance
Liberty ID-WSF

OK

Partial

Failed

Project: Version: 2.1
Data Services Template

The valueOKmeans that the processing oRaequestElemertitas succeeded. A second level status
code MAY be used to indicate some special cases, but the processinReduestElemeritas
succeeded.

The valuePartial means that the processing has succeeded only partially and partially failed,
e.g., in the processing of @Query> element some<Queryltem> element has been processed
successfully, but the processing of some o#®ueryltem> elements has failed. When the value
Partial is used for thecode XML attribute of the top level<Status> element, the top level
<Status>element MUST have second leveEtatus> elements to indicate the failed parts of a
RequestElement The processing of the parts not referred to by any of the second<4&tatus>
elements MUST have succeeded. A WSP MUST NOT use the vdu@l |, if it has not
processed the whoRequestElement

A WSP MUST NOT use the valueartial in case of modification requests, when a failed
<Modifyltem> element didn’t have a valitemiD XML attribute, i.e., a WSP is not able to indicate
the failed<Modifyltem> element. Inthose cases a WSP MUST use the vediled and anything
changed based on the already processed part MUST be rolled back.

A WSP MAY also choose to fail completely another typeR#questElemenivhen only a part of it
has failed, if the failed part does not have a vatehiD XML attribute. When ever the top level
valueFailed is used instead dfartial due to one or more missirgmID XML attributes, the
second level status cotlssingltemiD ~ MUST be used in addition to any other second level status
code.

In some cases the most descriptive second level status code may not be used as it, for example, might
compromise the privacy of a Principal. In those cases, when the second level status code must be
used to indicate the failed parts in a case of a partial failure, the \alsigecifiedError MUST

be used for the second level status code.

The valueFailed means that the processing oRaquestElemethias failed. Either the processing

of the wholeRequestElemeritas totally failed or it might have succeeded partially, but the WSP
decided to fail it completely. A specification for a service MAY also deny the use of the partial
failure and so force a WSP to fail, even when it could partially succeed. A second level status code
SHOULD be used to indicate the reason for the failure.

3.2.2. Second Level <Status> Codes

This specification defines the following second level status codes to be used as valuesdde tXdL attribute:

ActionNotAuthorized
AggregationNotSupported

AllIReturned

ChangeHistoryNotSupported
ChangedSinceReturnsAll

DataTooLong
DoesNotExist
EmptyRequest
ExistsAlready

ExtensionNotSupported

Failed

FormatNotSupported

InvalidData
InvalidExpires
InvaliditemIDRef

InvalidObjectType

InvalidPredefined
InvalidSelect
InvalidSetID
InvalidSetReq
InvalidSort
ItemIDDuplicated

Liberty Alliance Project

16

586

588
589
590

592
593

595
596
597

599
600

602
603
604

606
607

609
610
611

613
614
615
616
617
618

620
621

622
623
624
625

626
627

628
629
630
631
632
633

634

635
636
637
638

639

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

ResultQueryNotSupported
MissingCredentials
MissingDataElement
MissingExpiration
MissingltemID
MissingNewDataElement
MissingObjectType
MissingSecurityMechIDElement
MissingSelect

ModifiedSince

NewOrExisting
NoMoreElements
NoMoreObjects
NoMultipleAllowed
NoMultipleResources
NoSuchTest
ObjectTypeMismatch

OK

PaginationNotSupported

Partial
RequestedAggregationNotSupported
RequestedPaginationNotSupported
RequestedSortingNotSupported
RequestedTriggerNotSupported
SecurityMechIDNotAccepted
SetOrNewQuery
SortNotSupported
StaticNotSupported

TimeOut

TriggerNotSupported
UnexpectedError
UnspecifiedError
UnsupportedObjectType
UnsupportedPredefined

If a request or notification fails for some reason, thie XML attribute of the<Status>element SHOULD contain

the value of thétemID XML attribute of the offending element in the request message. When the offending element
does not have thiemID XML attribute, the reference SHOULD be made using the value oitth¥ML attribute,

if that is present.

If itis not possible to refer to the offending element (as it hagin@ritemiD XML attribute) the reference SHOULD
be made to the ancestor element having a proper identifier XML attribute closest to the offending element.

When a WSC compose a request message, it SHOULD avoid using same value for any two XML attributes, which
can be used to refer to the right place in return status. If there anyway are two XML attributes with the same value
and a WSP needs to refer using either of them when indicating a problem, a WSP MAY consider the whole message
as failed or used that value, when a high priority XML attribute has it. The priority ordemi¢D |, id , so, for
example, if both aitemID and and has same value, it can be used to refer to the element havingrthe XML

attribute with that value.

3.3. The timeStamp XML Attribute

A response and a notification message can also have a time stamp. This time stamp is provided so that the receiving
party can later check whether there have been any changes since a response or a notification was received, or make
modifications, which will only succeed if there have been no other modifications made after the time stamp was
received.

The processing rule for thetimeStamp XML Attribute

Liberty Alliance Project

17

640
641
642
643
644
645
646
647

648

649
650
651

652

653

654

655

656

657
658
659
660
661
662

663
664
665
666

667

668
669
670
671

672

673
674
675
676

677
678
679
680

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

A WSP MUST add aimeStamp to aResponseElemerit the processing of thRequestElementas successful and
a WSP supports either tlieangedSince XML attribute or thenotChangedSince XML attribute or both properly.
The timeStamp XML attribute MUST have a value which can also be used as a value focHirgedSince

XML attribute, when querying changes made after the request for whichirtieStamp was returned or the
notification, which had théimeStamp . The value of thaimeStamp XML attribute MUST also be such that it
can be used as a value for thetChangedSince XML attribute, when making modifications after the request for
which thetimeStamp was returned or after receiving the notification message, which carrigichfg&tamp and the
modifications will not succeed, if there has been any modification after this request or notification.

3.4. General Error Handling

A WSP MAY also register a relevant discovery option keyword to indicate that it does not support certain type of
requests although they are available based on the specification for the service a WSP is hosting. Following discovery
option keywords are specified for this purpose:

e urn:liberty:dst:noQuery
e urn:liberty:dst:noCreate
e urn:liberty:dst:noDelete
« urn:liberty:dst:noModify
A WSP may encounter problems other than errors in the incoming message:

1.1f the processing takes too long (for example some back-end system is not responding fast enough) the second
level status codgimeOut SHOULD be used to indicate this, when the request is not processed due to a
WSP internal time out. The duration and indeed criteria for deciding when timeout has happened depend on
WSP and are not externally visible other than the fact thatTiheOut status code is returned. Note that
[LibertySOAPBInding specifies a header block which a WSC may use to define threshold for timeout, but that
is different functionality and the processing rules for that are specifiddlieftySOAPBInding.

2.0ther error conditions than those listed in this specification and in service specifications may occur. There are
two status codes defined for those cases. For cases a WSP (or WSC receiving a notification) can handle normally
but for which there is no status code specified, the second level statug)oseteifiedError SHOULD be
used. For totally unexpected cases the second level statutJaegieectedError SHOULD be used.

3.5. Linking with id s

Different types ofd XML attributes are used to link queries and responses and notifications and acknowledgments to-
gether (se€igure §. Response messages are correlated with requestsavggagmessagelDand<wsa: RelatesTo>

SOAP headers (sekipertySOAPBInding). Inside messagegemID anditemiDRef XML attributes are used for

linking information inside response and acknowledgment messages to the details of request and notification messages.

See the definitions and the processing rules of the protocol elements for more detailed information.

Some elements in all messages can haveXML attributes of typexs:ID . Theseid XML attributes are necessary

when some part of the message points to those elements. As an example, if usage directives are used, then the usage
directive element must point to the correct element (kéeeftySOAPBInding). Some parts of the messages may be

signed and tha XML attribute is necessary to indicate which elements are covered by a signature.

It often happens that a query item of some sort needs to be correlated with a data itetamiihe anditemIDRef

XML attributes are used for this purpose. They differ from regular XML ID attributes in that the namespace, and
consequently the uniqueness constraint, are per type of item referred, i.e.ifsae can appear ikTestltem>
and<Queryltem> without danger of confusion.

Liberty Alliance Project

18

681

682
683

684

685

686
687

688
689

690
691
692

693

694
695
696
697
698
699
700
701

702
703
704
705
706
707
708

710
711
712

714
715
716
717
718
719

721
722
723
724

725

726
727
728
729

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

3.6. Resources

The present version of DST differs from previous versions, Segtion 8 significantly in the way the resource is
accessed: there is no explicit ResourcelD anymore. The resource is identified by one of the following mechanisms

« Implicitly (e.g., PAOS exchange)
* From<Targetldentity> SOAP header, se¢ipertySOAPBInding

« Using credentials that were supplied: it is presumed that the resource of the credential holder, i.e., the principal
herself, is to be accessed.

« From endpoint. A service may choose to offer different end point for every resource accessed. The simplest case
of this is to represent the resource as a part of the query string.

If confidentiality of the resource being accessed is desired <ffagetldentity> or the credentials, a SAML
assertion insidewss: Security>header, SHOULD contain an encrypted SAML assertion (this mechanism replaces
the<EncryptedResourcelD>mechanism of DST 1.1).

3.7. Selection

The second level of the selection is deeper insideRbguestElememiement. The request message must describe in

more detail what it wants to access inside the specified resource. This can be specified in two different ways. Either
the requesting WSC accesses data by selecting it explicitly in the request qoredefinedselection. When the
predefined selections are supported, the available predefined selections are specified in the service specification or are
agreed out of band. A WSC specifies the predefined selection it wants to use by putting its identifier into the request.
The identifier is carried as the value of theedefined XML attribute. When a WSC explicitly selects the data, it

has to first specify the type of the data object it wants to access and then select the right objects and the data inside it.
The XML attributeobjectType and the elementSelect>are specified for making the explicit selection.

<xs:element name="ChangeFormat">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ChangedElements"/>
<xs:enumeration value="CurrentElements"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:attribute name="changeFormat">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ChangedElements"/>
<xs:enumeration value="CurrentElements"/>
<xs:enumeration value="All"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="objectType" type="xs:NCName"/>
<xs:attribute name="predefined" type="xs:string"/>
<xs:attributeGroup name="selectQualif">
<xs:attribute ref="dst:objectType" use="optional"/>
<xs:attribute ref="dst:predefined" use="optional"/>
</xs:attributeGroup>

Figure 6. XML Attributes for <Select>

The name of the root element of an object is used as the identifier of that object type (XML atthijaat&ype).

Each service specification must list the supported object types and provide their names, schemata and semantics. All
object types starting by underscore character (*_") are reserved for use by Liberty framework specifications. Other
than that, the namespace of object types is up to the service specification. When a service type supports only one

Liberty Alliance Project

19

730
731

732
733
734
735
736
737

738
739
740
741
742

743
744

745
746
747
748
749

750
751
752
753
754

755
756

757
758
759
760
761
762

763

764

765
766
767
768

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

type of object, thebjectType XML attribute may be left out from request messages. Also a service may specify a
default object type, which is assumed, if thigectType XML attribute is not present.

As an example, when the resource is a personal profiles8sect>can point to a home address. In the case of a
<Query>, this means that the whole home address is requested, oxfdodify>, the whole home address is being
modified, etc. When only a part of a home address is accessedSéhect>element must point only to that part, or in

the case of &Modify> the parts not to be modified must be rewritten using their existing values, when whole home
address is given. Different parts of the resource can be accessed using thRespmstElemerglement as those
elements can contain multipiSelect>elements in their own sub-structure.

Please note that the previous paragraph only described an exampkSédleet>element may also be used differently.

It is defined to contain needed parameters, but the parameters are defined by the specification for a service type. A
service may have multiple different type of parameters characterizing data to be accessed and, for example, instead of
pointing to some point in a data structure, the content okBelect>element may, for example, list the data items to

be accessed with some quality requirements for the data to be returned.

The<Select>element may also be omitted from a request, when all objects of the specified or default type are accessed,
e.g., queried, in one request.

The type of<Select>is SelectType . Although the type is referenced lkis specification, the type may vary
according to the service specifications using this schema, and therefore MUST be defined within each service schema.
As the type of thecSelect>element may be quite different in different services, a service specification MUST specify

the needed processing rules, if the processing rules provided by this specification are not adequate. If there are any
conflicts the processing rules in the service specifications MUST override the processing rules in this specification.

When theSelectType is specified for a service, it must be very careful about what type of queries and modifies
needs to be supported. Typically tk&elect>points to some place in the conceptual XML document and it is
RECOMMENDED that a string containing an XPath expression is usedSefect>element in those kind of cases.
There are many other type of cases andSblectType must be properly specified to cover the needs of a service

type.

As a service may support different type of objects,$keectType MUST be defined so that it supports all different
types of objects.

When XPath is used, it is not always necessary to support full XPath. Services SHOULD limit the required set of
XPath expressions in their specifications when full XPath is not required. A service may support full XPath even if

it is not required. In that case the service MAY register the urn:liberty:dst:fullXPath discovery option keyword. If
the required set of XPath expressions does not include the path to each element, a service may still support all paths
without supporting full XPath. In that case the service MAY register the urn:liberty:dst:allPaths discovery option
keyword.

3.8. Common Processing Rules for Selection

3.8.1. Processing Rules for the predefined XML Attribute

1.When a WSC uses theedefined XML attribute in a subelement ofRequestElemeriement, it MUST NOT
use theobjectType XML attribute, the<Select>element, or the<Sort> element. If either or all of them are
present anyway together withpgedefined XML attribute, a WSP MUST ignore them, when processing that
subelement.

Liberty Alliance Project

20

769
770
771
772
773
774
775

776

777

778
779
780
781
782
783
784

785
786
787
788
789
790
791

792

793
794
795
796
797
798

799
800
801
802
803
804
805

806

807
808

809
810
811
812
813

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2.1f the predefined XML attribute contains an identifier of a predefined selection, which a WSP does not
support, the processing of the subelement containinguefined XML attribute MUST fail and a status
code indicating the failure MUST be returned in the response. A more detailed status code with the value
UnsupportedPredefined SHOULD be used in addition to the top level status code. Ifgleglefined
XML attribute contains an unknown value, the processing of the subelement containprgdbined XML
attribute MUST fail and a status code indicating failure MUST be returned in the response. A more detailed status
code with the valuénvalidPredefined SHOULD be used in addition to the top level status code.

3.A WSP MUST follow service specific processing rules for the values ofptéxdefined XML attribute.

3.8.2. Processing Rules for the objectType XML Attribute

1.1f the objectType XML attribute is missing from a subelement of RequestElemerglement, when it is
supposed to be used, the processing of that subelement MUST fail and a status code indicating the failure MUST
be returned in the response. A more detailed status code with theMiakiegObjectType SHOULD be used
in addition to the top level status code. The subelements referred here a@ubeyltem>, the<Createltem>,
the <Deleteltem>, the<Modifyltem>, and the<ResultQuery>. All these elements are defined later with other
protocol elements. Note: in some casesdbiectType XML attribute is not needed, e.g., when a default object
type has been defined for a service and that object type is accessed or a service only suppbjtstonee

2.1f the objectType XML attribute refers to a specified object type, but the WSP does not support it, the
processing of the subelement containing dbgctType XML attribute MUST fail. A more detailed status
code with the valu&nsupportedObjectType SHOULD be used in addition to the top level status code. If the
objectType XML attribute contains an unknown object type name, the processing of the subelement containing
theobjectType XML attribute MUST fail. A more detailed status code with the valoealidObjectType
SHOULD be used in addition to the top level status code. Note that a data service may support extensions,
making it difficult for a requestor to know the exact set of allowable values fostifeetType XML attribute.

3.8.3. Processing Rules for the <Select> Element

1.1f the <Select>element is missing from a subelement ®@questElemeriement, when it is supposed to be use,
the processing of that subelement MUST fail and a status code indicating the failure MUST be returned in the
response. A more detailed status code with the visligsingSelect =~ SHOULD be used in addition to the top
level status code. The subelements referred here ardXbketeltem>, the<Queryltem>, the<ResultQuery>,
and the<Modifyltem>. All these elements are defined later with other protocol elements. Note: in some cases
the<Select>element is not needed.

2.1fthe <Select>element has invalid content, e.g., does not match with the object type specifiecbjetiieype
XML attribute, contains an invalid pointer to a data not supported by the WSP or doesn’t contain the specified
parameters, the processing of the subelement containingSkkct>element MUST fail and a status code
indicating failure MUST be returned in the response. A more detailed status code with thewvalidSelect
SHOULD be used in addition to the top level status code, unless a service specification specifies more detailed
status codes better suited for the case. Note that a data service may support extensions, making it difficult for a
requestor to know the exact set of allowable values foxtBelect>element.

3.9. Requesting Meta and Additional Data

ResultQueryType and ItemDataType have an important role as parent classexQoéryType and <Data>,
respectively.

When a WSC sends a request to create or modify data, it might want to get back some additional data in addition to the
normal processing status, e.g., to get metadata a WSP has added to the newly creat&tleate> and<Modify>

elements allow inclusion ofResultQuery> elements in a request. AResultQuery> element is the basic data
selection element and can contain normal selection parameters: XML attribbetiefined andobjectType and
<Select>element. It may have also other parameters used in normal queries. These parameters and their processing

Liberty Alliance Project

21

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

814 rules are introduced iBection 4 The data queried with oneResultQuery>element is returned in ondtemData>
815 element.

816 <ItemData> is very similar to the<Data> element used to return data in responses to normal queries. The only
817 difference is that the<Data> element can have more XML attributes as normal queries have more features like
818 pagination. For the XML attributes common to both alternatives the same description and processing rules are valid,
819 seeSection 4for details.

820 <xs:complexType name="ResultQueryBaseType">

821 <xs:sequence>

822 <xs:element ref="dst:ChangeFormat" minOccurs="0" maxOccurs="2"/>

823 </xs:sequence>

824 <xs:attributeGroup ref="dst:selectQualif"/>

825 <xs:attribute ref="lu:itemIDRef" use="optional"/>

826 <xs:attribute name="contingency" use="optional" type="xs:boolean"/>

827 <xs:attribute name="includeCommonAttributes" use="optional" type="xs:boolean" default="0"/>
828 <xs:attribute name="changedSince" use="optional" type="xs:dateTime"/>

829 <xs:attribute ref="lu:itemID" use="optional"/>

830 </xs:complexType>
831 <xs:attributeGroup name="ItemDataAttributeGroup">

832 <xs:attribute ref="lu:itemIDRef" use="optional"/>

833 <xs:attribute name="notSorted" use="optional">

834 <xs:simpleType>

835 <xs:restriction base="xs:string">

836 <xs:enumeration value="Now"/>

837 <xs:enumeration value="Never"/>

838 </xs:restriction>

839 </xs:simpleType>

840 </xs:attribute>

841 <xs:attribute ref="dst:changeFormat" use="optional"/>

842 </xs:attributeGroup>

843 Figure 7. XML Attributes and Base Type for ResultQuery and ItemData

844 <xs:element name="Select" type="dstref:SelectType"/>
845 <xs:element name="ResultQuery" type="dstref:ResultQueryType"/>
846 <xs:complexType name="ResultQueryType">

847 <xs:complexContent>

848 <xs:extension base="dst:ResultQueryBaseType">

849 <xs:sequence>

850 <xs:element ref="dstref:Select" minOccurs="0" maxOccurs="1"/>

851 <xs:element name="Sort" minOccurs="0" maxOccurs="1" type="dstref:SortType"/>
852 </xs:sequence>

853 </xs:extension>

854 </xs:complexContent>

855 </xs:complexType>
856 <xs:element name="ltemData" type="dstref:ltemDataType"/>
857 <xs:complexType name="ltemDataType">

858 <xs:complexContent>

859 <xs:extension base="dstref:AppDataType">

860 <xs:attributeGroup ref="dst:ItemDataAttributeGroup"/>
861 </xs:extension>

862 </xs:complexContent>

863 </xs:complexType>
864 Figure 8. Reference Model ResultQuery and ItemData

865 Itis recommended that service specification writers study carefully when allowing requesting additional data provides
866 enough benefits compared to separate queries to justify the additional complexity.

g67 3.10. Common Processing Rules for Requesting Meta and Additional
ges Data

Liberty Alliance Project

22

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

869 1. A <ResultQuery>element MUST be processed as if it was@ueryltem> element and theData> element

870 used to carry the responses is replaced witamData> taking into account the facts that failisgResultQuery>
871 elements do not usually cause a failure of the request message arRésatitQuery>and<ItemData> have
872 less features. Segection 4for details.

873 2.1f the processing of arkResultQuery> element fails, the rest of the request message MUST be processed

874 normally unless otherwise specified in the service specification. Proper second level status codes SHOULD
875 be used indicate The reason for failing to processtResultQuery>element, but this MUST NOT affect the
876 value of the top level status code unless otherwise specified in the service specification.

877 3.1f a WSP does not supporResultQuery>inside<Create>or <Modify> elements and it receives such, it MUST

878 ignore it and process the message otherwise normally. Not respondingR®esnltQuery>is not considered

879 failure and MUST NOT affect the value of the top level status code unless otherwise specified in the service
880 specification. The second level status c&dsultQueryNotSupported MUST be used to indicate that the

881 WSP does not support this feature, if the feature is allowed in the service specification.

882 4.Each<ResultQuery>element MUST have thgemID XML attribute. Each<ltemData> element MUST have
883 anitemIDRef XML attribute referring to the correspondirdResultQuery>in the request.

884 5.A WSP MAY return additional data in &CreateResponse>and a<ModifyResponse>without a WSC

885 requesting for it. AWSC MUST tolerate such unsolicitdtemData> even if it does not interpret it. Unsolicited

886 <ltemData>MUST NOT have aritemIDRef XML attribute.

887 Unsolicited data can be useful, if the WSP thinks that the WSC needs this data, e.g., to be able access the same
888 data later on. For example a WSP may assign locally unigju® a newly created object and it wants to return

889 it to the WSC so that the WSC could access the same object easily later on

890 6.1f <ResultQuery>is used insidecCreate>or <Modify> and it uses relative query expressions, the query MUST
891 be interpreted relative to the data object just created or modified.

892 7.1f <ResultQuery>is used inside<Create> or <Modify>, the objectType = XML attribute of former MUST
893 agree with the one in the latter.

Liberty Alliance Project

23

894

895
896
897
898
899

900

901
902

903
904

905
906
907
908
909

910
911
912
913

915
916
917
918
919
920

922

923

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

4. Querying Data

Two different kinds of queries are supported; one for retrieving current data, and another for requesting only changed
data. These two different kinds of queries can be present together in the same message. The response can contain the
data with or without the common technical XML attributes, depending on the request. Some common XML attributes

are always returned for some elements. When there are multiple elements matching the search criteria, they can be
requested in smaller sets and sorted by defined criteria.

4.1. The <Query> Element

The <Query> element, which MAY appear multiple times in message body, unless forbidden by the service
specification, has following sub-elements:

<Testltem> (optional) Test items, if present, can be used to specify tests over the data. A test evaluates to true or
false without returning any data.

<Queryltem> (optional) Specifies what data the requestor wants from the resource and how. There can be multiple
<Queryltem> elements in on&Query>. Or there could be none: in this case the query
is evaluated only for purposes of the test items.<@ueryltem> can becontingenton a
<Testltem> by referencing the latter via an ID. Often the data set used to evaluate the test
will also be helpful for the query, e.g., the test can prime the cache for the query.

<xs:complexType name="TestltemBaseType">
<xs:attributeGroup ref="dst:selectQualif'/>
<xs:attribute name="id" use="optional" type="xs:ID"/>
<xs:attribute ref="lu:itemID" use="optional"/>
</xs:complexType>
<xs:element name="TestResult" type="dst: TestResultType"/>
<xs:complexType name="TestResultType">
<xs:simpleContent>
<xs:extension base="xs:boolean">
<xs:attribute ref="lu:itemIDRef" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

Figure 9. Utility Schema for Testltem and TestResult

Liberty Alliance Project

24

924
926
927
928

930
931

933
934
935

937
938

940
941
942
943
944
945
947
948
949

950
951

952

953

954
955

956

957

958

959

960

961
962
963
964
965

967

968

969

970
971

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<xs:complexType name="QueryType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="dstref: Testitem" minOccurs="0" maxOccurs="unbounded"/>
<Ixs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Testltem" type="dstref: TestltemType"/>
<xs:complexType name="TestltemType">
<xs:complexContent>
<xs:extension base="dst:TestltemBaseType">
<xs:sequence>
<xs:element name="TestOp" minOccurs="0" maxOccurs="1" type="dstref: TestOpType"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Queryltem" type="dstref:QueryltemType"/>
<xs:complexType name="QueryltemType">
<xs:complexContent>
<xs:extension base="dstref:ResultQueryType">
<xs:attributeGroup ref="dst: PaginationAttributeGroup"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Figure 10. Reference Model for Query, Testltem, and Queryltem

4.1.1. The <Testltem> Element

The <Testltem> contains a<TestOp> qualified by some attributes. The two, in conjunction witliectType are
used to indicate

1.the data on which the test is to be performed
2.the reference data against which the data (1) is to be tested
3.the nature of the test.
<TestOp> element
The content of theTestOp>, theTestOpType , MUST be specified by the service specification that references DST.

For example, if service specification specifies XPath as query language and WSC wanted to ask whether or not the
principal is of age, it could do so as follows:

<Testltem objectType="profile">
<TestOp>//Age >= '21'</TestOp>
</Testltem>

In the above example, all 3 aspects of the test are expressed within the XPath expression that appest3pe.
Each<Testltem> evaluates to true or false depending on result of evaluation fTastOp>.

If service specification specifies XPath antestOp>does not indicate a top-level XPath boolean() function, the WSP
MUST interpret the test expression as if this function was present.

Liberty Alliance Project

25

972

973
974
975

976
977
978

979

980
982

983
984
985

986

987
988
989

990

991
992

993
994

995
996
997

998
999
1000
1001
1002
1003

1004
1005
1006

1007

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Service Specific XPath Functions

Service specifications are encouraged to define XPath functions to simplify the expression of particular tests that are
expected to be frequently requested. For instance, a profile specification might define a XPath function to simplify the
of-age query:

number profile:age-compare([//age,] int test-age, string operator)

and permit selection like

<TestOp>profile:age-compare('21’, 'gt’)</TestOp>

Of course every service specific function requires service specific implementation, thus there is a continuum from
XPath standard to slightly customized, to fully custom query languages and the service specification authors have to
make the value judgment about where the sweet spot lies.

predefined XML attribute

While objectClass and <TestOp> aim to declaratively specify the test, in a specific deployment by mutual
agreement of parties involved in message exchangeprthiefined XML attribute can be used to specify some
agreed test.

4.1.2. The <Queryltem> Element

The<Queryltem> element is a refinement &esultQueryType , inheriting theobjectType XML attribute and the
<Select>and<Sort> elements as well as adding pagination related XML attributes.

TheobjectType and<Select>specify the data the query should return. The contents cf8atect>are determined
by SelectType which MUST be defined by the service specification referencing DST.

When the<Select>defines that one or more data elements should be returned, then all of these elements (including
their contained descendants) are returned unless service specific parameters filter out some or all requested data. Also
privacy rules may not allow returning some or all of the requested data.

The <Queryltem> can also have &Sort> element. The type and possible content of this element are specified by

the services using this feature. ThBort> element contains the criteria according to which the data in the response
should be sorted. For example, address cards of a contact book could be sorted based on names using either ascending
or descending order. As sorting is resource consuming the service specification MUST use sorting very carefully and
specify sorting only based on the data and criteria which are really needed. In many cases sorting on the server side
is not needed at all. When sorting is needed, only a very limited set of available sorting criteria should be defined.

The<Queryltem> can also have gaChangeFormat>element (se&igure §. The value of this element specifies, in
which format the requesting WSC would like to have the data, when querying for changes. Two different formats are
defined in this specification. These formats are explained in the processing rul8gsiea 4.3

The<Queryltem> element can have two XML attributes qualifying the query in more detail:

Liberty Alliance Project

26

1008
1009
1010
1011
1012
1013
1014

1015

1016
1017
1018
1019
1020
1021
1022

1023
1024
1025
1026

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

includeCommonAttributes (optional) The includeCommonAttributes specifies what kind of response is
requested. The default value False , which means that only the data specified in the
service definition is returned. If the common XML attributes specified for container and
leaf elements in this document are also needed, then this XML attribute must be given the
valueTrue . If theid XML attribute is used for distinguishing similar elements from one
other by the service, it MUST always be returned, even iftbiedeCommonAttributes
is False .

Thexml:lang andscript XML attributes are always returned when they exist.

changedSince (optional) ThechangedSince XML attribute should be used when the requestor wants to get only
the data which has changed since the time specified by this XML attribute. The changed
data can be returned in different ways. A WSC should specify the format it prefers using
the elemenkChangeFormat> Please note that use of thisangedSince XML attribute
does not require a service to support the common XML attribuddificationTime
The service can keep track of the modification times without providing those times as
modificationTime XML attributes for different data elements.

In addition to theid XML attribute, the<ResultQuery> or <Queryltem> element can also have #amiD XML
attribute. ThetemID XML attribute is correlated witlitemIDRef XML attributes in the<Data> elements in the
response to match the data to #t@ueryltem> that produced them. Such correlation is necessary iktQeery>
element contains multipleQueryltem> elements.

4.1.3. Pagination

When the search criteria defined in th€elect>matches multiple elements of same type and name, the WSC may
want to have the data in smaller sets, i.e., a smaller number of elements at a time. This is achieved by using the XML
attributescount , offset , setlD andsetReq of the <Queryltem> element. The basic XML attributes are the

count and theoffset

count (optional) Thecount XML attribute defines, how many elements should returned in a response. This
is the amount of the elements directly addressed by<tBelect> their descendants are
automatically included in the response, if not elsewhere otherwise specified.

offset (optional) The offset XML attribute specifies, from which element to continue, when querying for
more data. The default value is zero, which refers to the first element.

<xs:attributeGroup name="PaginationAttributeGroup">
<xs:attribute name="count" use="optional" type="xs:nonNegativelnteger"/>
<xs:attribute name="offset" use="optional" type="xs:nonNegativelnteger" default="0"/>
<xs:attribute name="setlD" use="optional" type="lu:IDType"/>
<xs:attribute name="setReq" use="optional">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Static"/>
<xs:enumeration value="DeleteSet"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:attributeGroup>
<xs:attributeGroup name="PaginationResponseAttributeGroup">
<xs:attribute name="remaining" use="optional" type="xs:integer"/>
<xs:attribute name="nextOffset" use="optional" type="xs:nonNegativelnteger" default="0"/>
<xs:attribute name="setlD" use="optional" type="lu:IDType"/>
</xs:attributeGroup>

Figure 11. XML Attributes for Pagination

Liberty Alliance Project

27

1056
1057
1058
1059
1060
1061
1062
1063

1064
1065
1066

1067
1068

1069
1070
1071

1072

1073

1074

1075

1076
1077

1078
1079

1080
1081
1082

1083
1084
1085
1086

1087
1088

1089
1090
1091
1092
1093
1094

1095
1096

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

Changes may happen while a WSC is requesting the data in smaller sets as this requiressQugpje messages

and so will cause multipl&QueryResponses. This is not a problem for many services, but with some services

this might cause problems as an inconsistent set of data may be returned to the requesting WSC. If supported by
the service type and the WSP, a WSC may request that the modifications done by others are not allowed to effect
what the requesting WSC gets. In the firgQuery> of a sequence, the requesting WSC includess#tReq

XML attribute with the valueStatic . The query response returns an identification for the set and in the following
queries, this is included as the value of teeiD XML attribute. At the end the WSC requests that the set is deleted
(setReq="DeleteSet") to free the resources on the WSP side.

setlD (optional) ThesetiD XML attribute contains an identification of a set. This must be used by a WSC,
when it wants to make sure that no modifications are done to the set, while it is querying the
data from the set.

setReq (optional) With thesetReq XML attribute a WSC is able to request that a consistent set is created for
coming queries (valustatic) or a set is deletedDgleteSet).

A service specification MUST specify the elements for which the pagination is supported. The pagination is not meant

to be available for every request, just for a selected types of requests. As the use of the static sets may consume more
resources on the server side than the normal pagination, the use of static sets must be considered carefully.

4.2. The <QueryResponse> Element
In addition to different identifiers theQueryResponse>xontains
<Status> Overall success or failure of the query

<TestResult>(optional) Indications of the outcomes of the test items that were present kQuery>.

<Data> (optional) The data resulting fromQueryltem> elements. EackData>is correlated to corresponding
<Queryltem> usingitemIDRef XML attribute.
The <QueryResponse>elements are correlated, using thiggmIDRef XML attributes, to the<Query> elements

(ItemID XML attributes).

The requested data is encapsulated insiData> elements. One&Data> element contains data requested by one
<Queryltem> element. If there were multipleQueryltem> elements in the<Query>, the <Data> elements are
linked to their correspondingQueryltem> elements using thieiemIDRef XML attributes.

If a WSC requested sorting, but a WSP does not support the requested type of sorting or sorting in general, a WSP
SHOULD return the data unsorted, but then it MUST indicate this by including the XML attniot$erted within
the<Data> element carrying the unsorted data. HoeSorted XML attribute may have either the valiiow, when
the requested sorting is not supported, but sorting in generaligwver , when the sorting is not supported at all.

If a WSC was querying for changes, thiBata> element may contain the XML attributdangeFormat to indicate
in which format the changes are returned (Bigure 6.

The<Data>element extendsemDataType with XML attributesnextOffset ~ andremaining , when a smaller set

of the data instead all the data was requested usingding and theoffset XML attributes in the request. The
nextOffset XML attribute in a response is the offset of the first item not included in the response. So the value of
thenextOffset XML attribute in a response can be used directly fordfiset XML attribute in the next request,
when the data is fetched sequentially. Temaining XML attribute defines, how many items there are after the last
item included in the response. ThetID XML attribute is also included, when a static set is accessed.

If there were multiple<Query> elements in the request message, ¢@ueryResponse>elements are linked to
correspondingQuery> elements witlitemIDRef XML attributes.

Liberty Alliance Project

28

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1097 4.3. <ResultQuery> or <Queryltem> Conditioned by <Testltem>

1098 ResultQueryType hasitemIDRef andcontingency attributes so that the query items can be made contingent on
1099 some<Testltem>. ThisitemIDRef correlates with théemID in the<Testltem>, seeSection 4.1.1

1100 1. A service specification MAY restrict, or forbid, use aflestltem> in conjunction with<ResultQuery> or

1101 <Queryltem>. if use of<Testltem> is fully supported, the WSP MAY register the discovery option keyword
1102 urn:liberty: dst:contingentQueryltems

1103

1104

1105 2.1f contingency attribute is present, theemIDRef MUST be present as well and vice versa.

1106 3.IftheitemIDRef attribute does not matchTestlitem>then the WSP MUST stop processing #f@ueryltem>
1107 or <ResultQuery>and return a second level status cotSuchTest .

1108 4.1f <Queryltem> or <ResultQuery>has acontingency attribute, the WSP MUST process tkQueryltem>

1109 or <ResultQuery>if and only if the<Testltem> referenced using theemIDRef evaluates to the value of the
1110 contingency XML attribute.

1111 5.The scope of thétemIDRef is one<Query>, <Create>, or <Modify>. itemIDRef MUST NOT refer to
1112 itemID in another top level element. ThemID XML attributes of<Testltem> elements MUST be unique
1113 within one<Query>, <Create>, or <Modify> element in the request. Thdestltem>, <ResultQuery>, and
1114 <Queryltem> share sami&emID space.

1115 4.4. Processing Rules for Queries
1116 NOTE: The common processing rules specified earlier MUST also be followe&éstien 3.

1117 4.4.1. Processing Rules for Multiple <Queryltem> Elements

1118 One<Query> element can contain multipkeQueryltem> elements. The following rules specify how those must be
1119 supported and handled:

1120 1.AWSP MUST support ongQueryltem> element inside &Query>and SHOULD support multiple. If a WSP

1121 supports only on&Queryltem> element inside aQuery> and the<Query> contains multiple<Queryltem>
1122 elements, the processing of the whef@uery> MUST fail and a status code indicating failure MUST be returned
1123 in the response. A more detailed status code with the \edultipleAllowed SHOULD be used in addition
1124 to the top level status code. If a WSP supports multip@ueryltem> elements inside &Query>, it MAY
1125 register the urn:liberty:dst: multipleQueryltems discovery option keyword.

1126 2.1f the <Query> contains multiple<Queryltem> elements, the WSC MUST adtdmID XML attributes to each
1127 <Queryltem> element. The WSP MUST link theData> elements to correspondirgQueryltem> elements
1128 using theitemIDRef XML attributes, if there werdtemID XML attributes in the<Queryltem> elements
1129 and there were multipleQueryltem> elements in thecQuery>. TheitemIDRef XML attribute in a<Data>
1130 element MUST have the same value asith@ID XML attribute in the correspondingQueryltem> element.

1131 3.1f processing of axQueryltem> fails, any remaining unprocesseQueryltem> elements SHOULD NOT be

1132 processed. The data for the already processgderyltem> elements SHOULD be returned in the response
1133 message and the status code MUST indicate the failure to completely process the<@hely>. A more

1134 detailed status SHOULD be used in addition to the top level status code to indicate the reason for failing to
1135 process the first failedQueryltem>.

1136 4.Unless service specification expressly allows an empQuery/>, <Query> MUST have at least one
1137 <Queryltem> or <Testltem> element. If not<Query> MUST fail with EmptyRequest second levetode . If
1138 empty<Query/> is allowed, it SHOULD have semantics of returning the default document.

Liberty Alliance Project

29

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1139 4.4.2. Processing Rules for <Select> Element

1140 1.1f there is nochangedSince XML attribute in the<Queryltem> element and theSelect>requests valid data

1141 elements, but there are no values, the WSP MUST NOT returnr<@ata> element for thakQueryltem>

1142 unless a WSC is requesting pagination. In this case a WSP MUST retuxDtite> element containing the
1143 remaining and thenextOffset XML attributes even, when no actual data is returned (see processing rules
1144 related to pagination later on).

1145 2.1f the <Select>requests multiple data elements, the WSP MUST return all of those data elements inside the
1146 <Data> element corresponding to the containik@Queryltem>.

1147 4.4.3. Sorting Query Results

1148 1.When the<Sort> element is included in aQueryltem> element, the data returned insidec@ata> element

1149 SHOULD be sorted according to the criteria given in #&ort> element. If a WSP doesn’'t support sorting, it
1150 SHOULD return the requested data unsorted. When the data is returned unsonetsdéhted XML attribute

1151 MUST be used in theData> element containing the unsorted data. A WSP MAY also choose to fail to process
1152 the <Queryltem>, if it does not support sorting. In that case the second level statusSmotkntSupported

1153 SHOULD be used in addition to the top level status code. A WSP may also register discovery option keyword
1154 urn:liberty:dst:noSorting, if the sorting has been specified for the service type, but the WSP doesn't support it.
1155 2.1f the content of the<Sort> element is not according to service specifications, a WSP SHOULD return the
1156 requested data unsorted. When the data is returned unsorted$ioeed XML attribute MUST be used in

1157 the<Data> element containing the unsorted data and the second level statusical@Sort SHOULD also

1158 be used. A WSP MAY also choose to fail to process<ieryltem>, if the content of the<Sort> element

1159 is not according to service specifications. In this kind of a case the second level statusvatidort

1160 SHOULD be used in addition to the top level status code. If the content cf$loet> element is valid, but a

1161 WSP does not support the requested type of sorting, it SHOULD return the requested data unsorted. When the
1162 data is returned unsorted, thetSorted XML attribute MUST be used in theData> element containing the

1163 unsorted data. A WSP MAY also choose to fail to process oft@Qeeryltem>, if it does not support the

1164 requested type of sorting. It SHOULD use the second level statusRmgestedSortingNotSupported in

1165 addition to the top level status code.

1166 3.When thenotSorted XML attribute is used, it MUST have the valiaow, when a WSP supports sorting, but
1167 not the requested type or the content of 48ort> element was invalid. TheotSorted XML attribute MUST
1168 have the valudlever , when a WSP does not support sorting at all.

1169 4.4.4. Pagination of Query Results

1170 A WSC may want to receive the data in smaller sets instead of getting all the data at once, when there can be many
1171 elements with the same name. A WSC indicates this using either or both of the XML attributes andoffset

1172 in a<Queryltem> element, when theSelect>addresses a set of elements all having the same name. The number of
1173 elements inside this set may be restricted further by other parameters. Also access rights and policies may reduce the
1174 set of elements a WSC is allowed to get.

1175 1.A WSP MUST always follow the same ordering, when #&elect>and<Sort> elements have the same values

1176 and either or both of XML attributesount andoffset are used in th&Queryltem> element. If same query

1177 is made twice without a modification intervening, the result set MUST be the same and in same order. This is
1178 needed to make sure, for example, that a WSC really gets the next ten items, when asking for them, and not e.g.
1179 five of the previously returned items with five new items.

Liberty Alliance Project

30

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1180 2.When either or both of the XML attributesunt andoffset is used in acQueryltem> element and a WSP

1181 doesn’t support pagination, the processing of whalgueryltem> element MUST fail and the second level
1182 status cod@aginationNotSupported SHOULD be used in addition to the top level status code. A WSP may
1183 support pagination, but not for the requested elements. In such a case the processing &fQuisnidgtem>

1184 element MUST fail and the second level status cedguestedPaginationNotSupported SHOULD be used

1185 in addition to the top level status code. If a WSP doesn’t support pagination at all, it MAY register the discovery
1186 option keyword urn:liberty:dst:noPagination to indicate this.

1187 3.When thecount XML attribute is included in acQueryltem> element, the correspondirgpata> element in

1188 the <QueryResponse>MUST NOT contain more elements addressed with the value of8wect>element

1189 than specified by theount XML attribute. A WSP MAY return a smaller number of elements of the same
1190 name that requested by a WSC. If dwaint XML attribute has the value zero, the WSP MUST NOT return any
1191 data elements inside tkeata> element. Thisount="0" may be used for querying the number of remaining
1192 elements starting from the specified offset, e.g., from offset zero, i.e., the total number of the elements addressed
1193 by the<Select>element. When theount XML attribute is not used in &Queryltem> element, it means that

1194 the WSC requests for all data specified by other parameters likeSblect>element starting from the specified
1195 offset. As the default value for theffset XML attribute is zero, the case when neither of the XML attributes
1196 offset orcount is not present reduces to a normal query.

1197 4.When pagination is requested by a WSC, the elements insid@aga> element MUST be in the ascending

1198 order of their offsets. The first element MUST have the offset specified byftket XML attribute in the

1199 <Queryltem> element. The<Data>element MUST have both XML attributegxtOffset ~ andremaining

1200 ThenextOffset XML attribute MUST have the offset of the first element not returned in the response. The
1201 value of theemaining XML attribute MUST define how many elements there are left starting from the value of
1202 thenextOffset , if a WSP knows that (e.g., that information might not be available from a backend system). If
1203 WSP does not know the exact value, it MUST use the valutor theremaining XML attribute until it knows

1204 the value or there is no data lefefaining="0"). Whenremaining="-1" , a WSC must make new requests
1205 until remaining="0" , if it wants to get all the data.

1206 5.Usually, when there is no data matching the different query parametersData> element is returned in a

1207 <QueryResponse> When either or both of theount andoffset attributes are used, theData> element
1208 MUST be returned, even, when no data is returned (e.g., no data availableor'0" used to get the number
1209 of data items). This is required so that a WSP can returmetiaining and thenextOffset XML attributes
1210 to the requesting WSC.

1211 6.When thesetReq XML attribute is included in axQueryltem> element and has the val$atic , the WSP
1212 SHOULD return thesetiD XML attribute to the requesting WSC and proces3ueryltem> elements later
1213 having thissetlD based on the data the WSP has at the time, when the value feettbe was created. If
1214 a WSP receives @Queryltem> element having theetReq XML attribute and does not support static sets for
1215 the requested data or not at all, the processing ok@eeryltem> element MUST fail and a second level status
1216 codeStaticNotSupported SHOULD be used in addition to the top level status code. If a WSP doesn’t support
1217 static sets at all, it MAY register the discovery option keyword urn:liberty:dst:noStatic.

1218 7.When thesetlD XML attribute is included in a request, the following parameters MUST NOT be used in
1219 a <Queryltem> element: the<Select>element, the<Sort> element, theechangedSince XML attribute, the
1220 includeCommonXML Attributes XML attribute, or thepredefined XML attribute. The requests are made
1221 from an earlier defined static set and #twint and theoffset XML attributes are used to define, what is
1222 requested from that set. If any of the mentioned parameters is present, wheaibheXML attribute is used,
1223 it is unclear what a WSC wants and the processing of the whQigeryltem> MUST fail and a second level
1224 status cod&etOrNewQuery SHOULD be used in addition to the top level status code.

1225 8.When thesetiD XML attribute is included in &Queryltem> element and has a valid value, tiBata>element
1226 in the response MUST always have #&ID XML attribute.

Liberty Alliance Project

31

1227
1228
1229
1230
1231

1232
1233
1234

1235
1236
1237

1238

1239
1240

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

1253

1254

1255
1256
1257
1258
1259
1260
1261

1262
1263
1264
1265

1266
1267
1268

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

9.When a static set is created, the requesting WSC SHOULD query all the data it needs from this set as soon as
possible and delete the static set immediately after this usitRpg="DeleteSet" . A WSP MAY also delete
the static set, even if a WSC hasn't yet requested the deletion of the static set. If a WSC tries to make a request to
a non-existing static set, the processing of the wk@eieryltem> MUST fail and the second level status code
InvalidSetID SHOULD be used in addition to the top level status code.

10.The setReq="Static" and thesetiD XML attribute MUST NOT be used simultaneously irk@ueryltem>
element. If they are used, the WSP MUST ignored#t®eq="Static" and process theQueryltem> element
like thesetReq XML attribute would not be present.

11.1f the setReq XML attribute has some other value th&ratic or DeleteSet , the processing of the whole
<Queryltem> element must fail and a second level status dodaidSetReq =~ SHOULD be used in addition
to the top level status code.

4.4.5. Effect of Access and Privacy Policies

Even when the requested data exists, it should be noted that access and privacy policies specified by the resource owner
may cause the request to result in data not being returned to the requestor.

When a WSP processesQueryltem>, it MUST check whether the resource owner (the Principal, for example) has
given consent to return the requested information. To be able to check WSC specific access rights, the WSP MUST
authenticate the WSC (sekilpertySecMecl). The WSP MUST also check that any usage directive given in the
request is acceptable based on the usage directives defined by the resource owhdregg8 QAPBInding). If

either check fails for any piece of the requested data, the WSP MUST NOT return that piece of data. Note that there
can be consent for returning some data element, but not its XML attributes. For example, a resource owner might not
want to release thaodifier ~ XML attribute, if she does not want to reveal information about which services she uses.
The data for which there is no consent from the resource owner MUST be handled as if there was no data. The WSP
MAY try to get consent from the resource owner while processing the request, e.g., by using an interaction service,
see Libertylnteract. A WSP might check the access rights and policies in usage directives at a higher level, before
getting to DST processing and MAY, in this case, just return an ID-* Fault MesdalgerfySOAPBInding without
processing theQuery> element at all, if the requesting WSC is not allowed to access the data.

4.4.6. Querying Changes Since Specified Time
It is possible to query changes since a specified time usinghtirggedSince XML attribute.

1.1f the <Queryltem> element contains thehangedSince XML attribute, the WSP SHOULD return only those
elements addressed by th€elect>which have been modified since the time specified inctiemgedSince
XML attribute. There are two different formats, in which the changed data can be returned. A WSC SHOULD
indicate using thecChangeFormat>element the format it prefers and also, if it understands the other format.
The two formats areChangedElements and CurrentElements . If a service specification doesn’t specify
anything else the valuéhangedElements MUST be used as a default value as it is compatible with the format
used in the version 1.0 of the Data Services Template.

2.A WSP MUST ignore the<ChangeFormat>element, if thechangedSince XML attribute is not used in the
same<Queryltem> element. A WSP MUST NOT use a format, which a WSC does not understand. Note that
formatChangedElements , has the formaall as a fallback solution, when a WSP doesn’t have all the needed
change history information. Also if a WSP doesn’t support requesting only changed data, it returns all data.

3. A <Queryltem> element MAY contain tweChangeFormat>element with different values. A WSP SHOULD
use the format specified by the firs€ChangeFormat>element, but, if it does not support that format, it MAY
use the format specified by the secerichangeFormat>element.

Liberty Alliance Project

32

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1269 4.1f a WSP does not support the format a WSC is requesting to be used, the processing@i¢hgitem> MUST
1270 fail and the second level status cde@matNotSupported ~ SHOULD be used in addition to the top level status
1271 code.

1272 5.1f a WSC requests thehangedElements format and a WSP supports it, the WSP SHOULD return only the

1273 changed information. If some element has been deleted, a WSP SHOULD return an empty element to indicate
1274 the deletion €ElementName+/3. The only allowed exception to this is that the WSP does not have enough
1275 history information available to be able to return only the changed information. In that case it MUST use format
1276 All and return all current elements with their values even if those have not changed since the specified time.

1277 6.1f a WSC requests theurrentElements format and a WSP supports it, the WSP SHOULD return only the

1278 currently existing elements. It SHOULD return an empty element, if the element has not changed, to indicate that
1279 no change has happened{ementName/3.

1280 N.B. As empty elements are used to indicate either deleted or not changed elements depending on the used format,
1281 the formatsCurrentElements ~ andChangedElements do not work well, if the data hosted by a service may

1282 contain empty elements. In those cases a service should either use only Adrnaatalways have some XML

1283 attributes for the otherwise empty elements.

1284 7.1f a WSC has used theChangeFormat>element in a request, a WSP MUST use thangeFormat XML

1285 attribute in the response to indicate, which format is used. A WSP MUST not usshghgeFormat XML
1286 attribute in a response, if theChangeFormat> element was not used in the corresponding request so the
1287 processing stays version 1.0 compatible, whernd@eangeFormat>element is not used.

1288 8.If there can be multiple elements with same name,idh&XML attribute or some other XML attribute used to

1289 distinguish the elements from each other MUST be included (e.g., in case of an ID-SIS Personal Profile service
1290 the following empty element could be returnedddressCard id="tr7632q"/> to indicate a deleted or not

1291 changedAddressCard> depending on the used format). If the value of itheXML attribute or some other

1292 XML attribute used for distinguishing elements with same name is changed, the WSP MUST consider this as a
1293 case, in which the element with the original value of the distinguishing XML attribute is deleted and a new one
1294 with the new value of the distinguishing XML attribute is created. To avoid this, a WSP MAY refuse to accept
1295 modifications of a distinguishing XML attribute and MAY require that an explicit deletion of the element is done
1296 and a new one created.

1297 9.If the elements addressed by #®elect>have some values, but there has been no changes since the time specified

1298 in thechangedSince XML attribute, the WSP MUST return emptData> element €Data/>), when it returns

1299 the changes properly. This emptipata> element indicates that no changes have occurred. There might be cases
1300 in which the WSP is not able to return changes properly, see later processing rules. Please note that in cases that
1301 have no values, neData>element is returned to indicate this. So empBata>element has different semantics

1302 than missing<Data> element.

1303 10.If the <Queryltem> element contains thehangedSince XML attribute and a WSP is not keeping track of

1304 modification times, it SHOULD process tk&ueryltem> element as there would be nbangedSince XML

1305 attribute, and indicate this in the response using the second level statuSteodedSinceReturnsAll . This

1306 is not considered a failure and the rest of #@ueryltem> elements MUST be processed. Also it might be

1307 that a WSP does not have a full change history and so for some queries, it is not possible to find out, which
1308 changes occurred after the specified time. As processing with access rights and policy in place might be quite
1309 complex, a WSP might sometimes process the query for changes properly and sometime process it as if there
1310 were nochangedSince XML attribute. In those cases, when a WSP returns all current values, it SHOULD
1311 indicate this with the second level status ca@d®eturned and, if the<ChangeFormat>element was used

1312 in the request, thehangeFormat XML attribute with the valueAll SHOULD be used. This is also not

1313 considered a failure and the rest of ®@ueryltem> elements MUST be processed. Please note that the status
1314 codeAllReturned differs from the status codehangedSinceReturnsAll , asChangedSinceReturnsAll

1315 means that the WSP never processesctiamgedSince XML attribute properly. A WSP MUST use either

1316 AllReturned or ChangedSinceReturnsAll as the second level status code, when it returns data, but does

Liberty Alliance Project

33

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1317 not process thehangedSince XML attribute properly, i.e., returns only the changes. If a WSP will not process
1318 the <Queryltem> elements with ahangedSince XML attribute at all, it MUST indicate this with top level

1319 status codédrailed and SHOULD also return a second level status codetaihgeHistoryNotSupported

1320 in the response. In this case a WSP MUST NOT return <lDgta> element for the<Queryltem> element

1321 containing thechangedSince XML attribute. If a WSP processes thwhangedSince XML attribute, it

1322 MUST also support theotChangedSince XML attribute for <Modifyltem> element and MAY register the

1323 urn:liberty:dst:changeHistorySupported discovery option keyword. Please note that still in some cases a WSP
1324 MAY return AllReturned

1325 11.Access rights and policies in place may affect how the queries for changes can work as they affect which elements

1326 and XML attributes a WSC is allowed to see. If a WSC was originally allowed to get the requested data, but is
1327 no longer after some change in access policies, then from its point of view that data is deleted and that should
1328 be taken into account in the response. If the WSP notices that access rights have changed, and the current rights
1329 do not allow access, it MUST return all data except the data for which the access rights were revoked, and use
1330 the second level status cod#éReturned and, if the<ChangeFormat>element was used in the request, the

1331 changeFormat XML attribute with the valueall SHOULD be used. The WSP MUST NOT return empty

1332 elements for the data for which access rights were changed even if the fomerafedElement was requested,

1333 as this might reveal the fact that this specific data has at least existed at the service in some point of time. Please
1334 note that it might be the case that the data was added after the WSCs access rights were revoked and the WSC was
1335 never supposed to be aware of the existence of that data. If the WSP notices that the access rights are changed
1336 and the current rights do allow access, it MUST consider the data for which the access rights are changed, as if it
1337 were just created.

1338 12.Both the WSC and WSP may have policies specified by the Principal for control of their data. Only by comparing

1339 policy statements made by the WSC (wldsageDirective>elements (sed jbertySOAPBInding) with policies

1340 maintained on behalf of the Principal by the WSP it is possible to fully determine the effects of interaction
1341 between these sets of policies. As it might be too expensive to search for policies the WSC promised to honor
1342 when it made the original request, and this information might not even be available, the WSP might be only
1343 capable of making the decision based on the policy changes made by the Principal. If some data is prevented
1344 from being returned to the WSC due to conflicts in policies and the WSP notices that the Principal’s policies have
1345 changed, it MUST return all data except that for which the Principal’s policy has denied access against the current
1346 policy of a requesting WSC, and use the second level statusAiifdgurned to indicate that the WSC must

1347 check the response carefully to find out what has changed. Alsodf@GhangeFormat>element was used in the

1348 request, thehangeFormat XML attribute with the valueall SHOULD be used. The WSP MUST NOT return

1349 empty elements for the data for which the Principal’s policy was changed even if the foharafedElements

1350 was requested, as this might reveal the fact that this specific data was exposed by the service at some point in
1351 time. Please note that it might be the case that that data has been added after the policies were changed and the
1352 requesting WSC was never supposed to be aware of that data, unless it changed the policy it promises to honor.
1353 If the WSP notices that the Principal’s policy has changed and the current policy does allow access, it MUST
1354 consider the data for which the policy is changed as if it had been just created. If a WSC changes the policy it
1355 promises to honor, it SHOULD make a new query withoabhangedSince XML attribute.

1356 13.As mentioned earlier, the WSP might in some cases return all the current datagleet>points to, and not just

1357 the changes using specified format, even wherthegedSince XML attribute is present. So the WSC MUST

1358 compare the returned data to previous data it had queried earlier to find out what really has changed. Note that
1359 this MUST be done even when the WSP has processeathiingedSince correctly, because some values might

1360 have been changed back and forth and now they have same values that they used to have earlier, despite the most
1361 current previous values being different.

1362 4.4.7. Requesting Common XML Attributes

1363 The common XML attributes are not always returned. A WSC may indicate witm¢heleCommonAttributes
1364 XML attribute, whether it wants to have the common XML attributes or not.

Liberty Alliance Project

34

1365
1366
1367
1368

1369
1370
1371

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1.1f the includeCommonAttributes is set toTrue, the common XML attributes specified by XML at-
tribute groupscommonAttributes and leafAttributes MUST be included in the response, if their val-
ues are specified for the requested data elements. ATIEEXML attributes MAY be left out, if the value is
urn:liberty:dst:acc:unknown.

2.1ftheid XML attribute is used for distinguishing similar elements from each other by the service, it MUST be
returned, even if théncludeCommonAttributes is false. Also, when either or both of the XML attributes
xml:lang andscript are present, they MUST be returned, even ifitttideCommonAttributes is false

4.5. Examples

The following query example, based on hypothetical profile service, requests the common name and home address of
a Principal:

<hp:Query xmins:hp="urn:liberty:hp:2005-07">
<hp:Queryltem itemID="name">
<hp:Select>/hp:HP/hp: CommonName</hp: Select>
</hp:Queryltem>
<hp:Queryltem itemID="home">
<hp:Select>
/hp:HP/hp: AddressCard
[hp:AddressType="urn:liberty:id-sis-hp:a ddrType:home"]
</hp:Select>
</hp:Queryltem>
</hp:Query>

This query may generate the following response:

<hp:QueryResponse xmins:hp="urn:liberty:hp:2005-07">
<hp:Status code="OK"/>
<hp:Data itemIDRef="name">
<hp:CommonName>
<hp:CN>Zita Lopes</hp:CN>
<hp:AnalyzedName nameScheme="firstlast">
<hp:FN>Zita</hp:FN>
<hp:SN>Lopes</hp:SN>
<hp:PersonalTitle>Dr.</hp:PersonalTitle>
</hp:AnalyzedName>
<hp:AltCN>Maria Lopes</hp:AltCN>
<hp:AltCN>Zita Maria Lopes</hp:AltCN>
</hp:CommonName>
</hp:Data>
<hp:Data itemIDRef="home">
<hp:AddressCard id="9812">
<hp:AddressType>
urn:liberty:id-sis-hp:addrType:home
</hp:AddressType>
<hp:Address>
<hp:PostalAddress>
c/o Carolyn Lewis$2378 Madrona Beach Way North
</hp:PostalAddress>
<hp:PostalCode>98503-2341</hp:PostalCode>
<hp:L>Olympia</hp:L>
<hp:ST>wa</hp:ST>
<hp:C>us</hp:C>
</hp:Address>
</hp:AddressCard>
</hp:Data>
</hp:QueryResponse>

Liberty Alliance Project

35

1450

1451
1452
1453
1454
1455
1456
1457

1458

1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

If there was no user consent for the release ofthp: CommonName>or for the whole<hp: AddressCard> with
[hp:AddressType="urn:liberty:id-sis-hp:addrType:home"] , apart from the country information, then
the response is as follows (including a timestamp, as this service supports change history):

<hp:QueryResponse
xmins:hp="urn:liberty:hp:2005 -07"
timeStamp="2003-02-28T12:10:12Z">
<hp:Status code="OK"/>
<hp:Data itemIDRef="home">
<hp:AddressCard id="9812">
<hp:AddressType>
urn:liberty:id-sis-hp:addrType :home
</hp:AddressType>
<hp:Address><hp:C>us</hp:C></hp:Address>
</hp:AddressCard>
</hp:Data>
</hp:QueryResponse>

If there was no<hp:CommonName>and no<hp:AddressCard> with [hp:AddressType="urn:liberty:id-
sis-hp:addrType:home"] , then the response is:

<hp:QueryResponse
xmins:hp="urn:liberty:hp:2005-07"
timeStamp="2003-02-28T12:10:122">
<hp:Status code="OK"/>
</hp:QueryResponse>

The following request queries the fiscal identification number of the Principal with the common XML attributes:

<hp:Query xmins:hp="urn:liberty:hp:2005-07">
<hp:Queryltem includeCommonAttributes="True">
<hp:Select>/hp:HP/hp:Legalldentity/hp: VAT</hp: Select>
</hp:Queryltem>
</hp:Query>

This query may generate the following response:

<hp:QueryResponse
xmins:hp="urn:liberty:hp:2005-07"
id="12345"
timeStamp="2003-05-28T23:10:12 Z">
<hp:Status code="OK"/>
<hp:Data>
<hp:VAT
modifier="http://www.accountingservices.com"
modificationTime="2003-04-25T15:42:112"
ACC="urn:liberty:dst:acc:secondarydocuments">
<hp:IDValue
modifier="http://www.accountingservices.com"
modificationTime="2003-04-25T15:42:1 17"
ACC="urn:liberty:dst:acc:secondarydocumen ts">
502677123
</hp:IDValue>
<hp:IDType
modifier="http://www.accountingservices .com"
modificationTime="2003-03-12T09:12:092"
ACC="urn:liberty:dst:acc:secondarydocuments">
urn:liberty:altiDType:itcif
</hp:IDType>
</hp:VAT>

Liberty Alliance Project

36

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1482 </hp:Data>
1483 </hp:QueryResponse>
1484 <ds:Signature xmins:ds="http://www.w3.0rg/2000/09/xml dsig#">

1486 </as.: éignature>

1489 The following request queries for address information which has been changed since 12:10:12 28 February 2003 UTC:

1490 <hp:Query xmins:hp="urn:liberty:hp:2005-07">

1491 <hp:Queryltem changedSince="2003-02-28T12:10:12Z">
1492 <hp:Select>/hp:HP/hp:AddressCar d</hp: Select>

1493 </hp:Queryltem>

1494 </hp:Query>

1495

1496

1497 This query can generate following response:

1498 <hp:QueryResponse

1499 xmins:hp="urn:liberty:hp:2005-07"
1500 timeStamp="2003-05-30T16:10:12Z">
1501 <hp:Status code="OK"/>

1502 <hp:Data>

1503 <hp:AddressCard id='9812">

1504 <hp:Address>

1505 <hp:PostalAddress>

1506 2891 Madrona Beach Way North
1507 </hp:PostalAddress>

1508 </hp:Address>

1509 </hp:AddressCard>

1510 <hp:AddressCard id="w1g2'/>

1511 </hp:Data>

1512 </hp:QueryResponse>

1513

1514

1515 Please note that only the changed information inside<tife AddressCard> is returned. The response shows that
1516 after the specified time, there was also anotttgr: AddressCard> present, but that has been deleted. As there can
1517 be many<hp:AddressCard>elements, th& XML attribute is returned to distinguish distinct elements.

1518 If there have been no changes since the specified time, then the response is just:

1519 <hp:QueryResponse

1520 xmins:hp="urn:liberty:hp:2005-07"
1521 timeStamp="2003-05-30T16:10:12Z">
1522 <hp:Status code="OK"/>

1523 <hp:Data/>

1524 </hp:QueryResponse>

1525

1526

1527 If the same request for changed addresses is made includirfpph€hangeFormat>element:

1528 <hp:Query xmins:hp="urn:liberty:hp:2005-07">

1529 <hp:Queryltem changedSince="2003-02-28T12:10:12Z">
1530 <hp:Select>/hp:HP/hp:AddressC ard</hp: Select>

1531 <hp:ChangeFormat>CurrentElements</ hp: ChangeFormat>
1532 </hp:Queryltem>

1533 </hp:Query>

1534

1535

1536 All the current elements are returned in the response:

Liberty Alliance Project

37

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<hp:QueryResponse
xmins:hp="urn:liberty:hp: 2005 -07"
timeStamp="2003-05-30T16:10:12Z">
<hp:Status code="OK"/>
<hp:Data changeFormat="CurrentElements">
<hp:AddressCard id="9812">
<hp:Address>
<hp:PostalAddress>2891 Madrona Beach Way North</hp:PostalAddress>
<hp:PostalCode/>
<hp:L/>
<hp:ST/>
<hp:C/>
</hp:Address>
</hp:AddressCard>
</hp:Data>
</hp:QueryResponse>

Please note that now all the current elements inside thp:AddressCard> are returned. The deleted
<hp:AddressCard> is not shown at all and for the elements, which have not changed - only empty elements
are returned.

If a WSP does not support change history, then the response could be:

<hp:QueryResponse
xmins:hp="urn:liberty:hp: 2005 -07"
timeStamp="2003-05-30T16:10:12Z">
<hp:Status code="OK">
<Status code="ChangeSinceReturnsAll"/>
</hp: Status>
<hp:Data changeFormat="All">
<hp:AddressCard id="9812">
<hp:AddressType>urn:liberty:id-sis-hp:addrType:home</hp: AddressType>
<hp:Address>
<hp:PostalAddress>2891 Madrona Beach Way North</hp:PostalAddress>
<hp:PostalCode>98503-2341</hp:PostalCode>
<hp:L>Olympia</hp:L>
<hp:ST>wa</hp:ST>
<hp:C>us</hp:C>
</hp:Address>
</hp:AddressCard>
</hp:Data>
</hp:QueryResponse>

The rest of the examples are related to pagination and sorting based on fictional address service, so all the DST
elements in the namespace of that fictional address service.

ParametersSelect>and <Sort> and returnecData> elements do not have valid contents in the examples as the
main point is to show the principle how pagination works and the use of the pagination related XML attributes

A Resource contains 40 address cards and the WSC A wants to list those ordered by the City and 10 at the time. Due
to access rights and policies the WSC A is allowed to get only 30 of those AddressCards. The WSC A makes the first

query:

<ads:Query xmins:ads="http://www.example.com/2010/12/Ad dr">
<ads:Queryltem count="10">
<ads:Select>Pointing to the AddressCards</ads:Select>
<ads:Sort>Requesting sorting by the City</ads:Sort>
</ads:Queryltem>
</ads:Query>

Liberty Alliance Project

38

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1595 and gets back the first ten address cards ordered by the City:

1596 <ads:QueryResponse

1597 xmins:ads="http://www.example. com/2010/12/Addr"

1598 timeStamp="2004-03-23T03:40:00Z">

1599 <ads:Status code="OK"/>

1600 <ads:Data remaining="20" nextOffset="10">first ten address cards</ads:Data>
1601 </ads:QueryResponse>

1602

1603

1604 Then it queries the next ten starting from offset 10:

1605 <ads:Query xmins:ads="http://www.example.com/2010/12/Ad dr">

1606 <ads:Queryltem count="10" offset="10">

1607 <ads:Select>Pointing to the AddressCards</ads:Select>
1608 <ads:Sort>Requesting sorting by the City</ads:Sort>
1609 </ads:Queryltem>

1610 </ads:Query>

1611

1612

1613 and gets those

1614 <ads:QueryResponse

1615 xmins:ads="http://www.example. com/2010/12/Addr"

1616 timeStamp="2004-03-23T03:40:20Z">

1617 <ads:Status code="OK"/>

1618 <ads:Data remaining="10" nextOffset="20">next ten address cards</ads:Data>
1619 </ads:QueryResponse>

1620

1621

1622 After this the WSC B adds one more address card to the resource. The WSC A is allowed to get this address card, but
1623 when sorting based on the City, this new card has the offset 15. When the WSC A fetches the next ten address cards:

1624 <ads:Query xmins:ads="http://www.example.com/2010/12/Ad dr">

1625 <ads:Queryltem count="10" offset="20">

1626 <ads:Select>Pointing to the AddressCards</ads:Select>
1627 <ads:Sort>Requesting sorting by the City</ads:Sort>
1628 </ads:Queryltem>

1629 </ads:Query>

1630

1631

1632 It gets ten address cards, but it has already received the first address card already in the previous response.

1633 <ads:QueryResponse

1634 xmins:ads="http://www.example. com/2010/12/Addr"

1635 timeStamp="2004-03-23T03:41:00Z">

1636 <ads:Status code="OK"/>

1637 <ads:Data remaining="1" nextOffset="30">next ten address cards</ads:Data>
1638 </ads:QueryResponse>

1639

1640

1641 Finally the WSC A fetches the last address card.

1642 <ads:Query xmins:ads="http://www.example.com/2010/12/Ad dr">

1643 <ads:Queryltem count="1" offset="30">
1644 <ads:Select>Pointing to the AddressCards</ads:Select>
1645 <ads:Sort>Requesting sorting by the City</ads:Sort>

Liberty Alliance Project

39

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

</ads:Queryltem>
</ads:Query>

and gets the 31st address card from offset 30.

<ads:QueryResponse
xmins:ads="http://www.example. com/2010/12/Addr"
timeStamp="2004-03-23T03:41:17Z2">
<ads:Status code="OK"/>
<ads:Data remaining="0" nextOffset="31">the last address card</ads:Data>
</ads:QueryResponse>

So the WSC A didn’t get this new address card added by the WSC B and got one card twice.

In an alternative scenario, if supported by the WSP, the WSC A requests a static set to be created so that simultaneous
modifications can not affect the results the WSC A gets. The initial request includesieg XML attribute:

<ads:Query xmins:ads="http://www.example.com/2010/12/Ad dr">
<ads:Queryltem count="10" setReq="Static">
<ads:Select>Pointing to the AddressCards</ads:Select>
<ads:Sort>Requesting sorting by the City</ads:Sort>
</ads:Queryltem>
</ads:Query>

In the response the first ten address cards are returned together with a handle to this static set (the XML attribute
setlD).

<ads:QueryResponse
xmins:ads="http://www.example. com/2010/12/Addr"
timeStamp="2004-03-23T03:40:00Z">
<ads:Status code="OK"/>
<ads:Data remaining="20" nextOffset="10" setlD="gfkjds98">
first ten address cards
</ads:Data>
</ads:QueryResponse>

In the next query the WSC A queries the next ten address card referring to the static set usiti th€ML attribute.
The<Select>element is not anymore used.

<ads:Query xmins:ads="http://www.example.com/2010/12/Ad dr">
<ads:Queryltem count="10" offset="10" setID="gfkjds98"/>
</ads:Query>

In the response the next ten address cards are returned amdEheis still returned as always when accessing a static
set.

<ads:QueryResponse
xmins:ads="http://www.example. com/2010/12/Addr"
timeStamp="2004-03-23T03:40:00Z">
<ads:Status code="OK"/>
<ads:Data remaining="10" nextOffset="20" setlD="gfkjds98">
next ten address cards
</ads:Data>
</ads:QueryResponse>

Liberty Alliance Project

40

1726

1727
1728
1729
1730
1731
1732
1733

1734
1735
1736
1737

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

When the WSC B tries to add a new address card, it doesn’t affect the data the WSC A gets, when requesting the next
ten address cards.

<ads:Query xmins:ads="http://www.example.com/2010/12/Ad dr">
<ads:Queryltem count="10" offset="20" setID="gfkjds98"/>
</ads:Query>

So the WSC A gets the last ten address card.

<ads:QueryResponse
xmins:ads="http://www.example. com/2010/12/Addr"
timeStamp="2004-03-23T03:40:00Z">
<ads:Status code="OK"/>
<ads:Data remaining="0" nextOffset="30" setID="gfkjds98">
.. next ten address cards ...
</ads:Data>
</ads:QueryResponse>

Finally the WSC A deletes the static set. This deletion could have been done together with the previous request, but
the WSC wanted to play safe and delete the static set only after getting all the data it wanted.

<ads:Query xmins:ads="http://www.example.com/2010/12/Ad dr">
<ads:Queryltem count="0" setID="gfkjds98" setReq="DeleteSet"/>
</ads:Query>

And the WSP acknowledges the request.

<ads:QueryResponse
xmins:ads="http://www.example. com/2010/12/Addr"
timeStamp="2004-03-23T03:40:00Z">
<ads:Status code="OK"/>
</ads:QueryResponse>

So the addition the WSC B tried to make is not visible in the static set. Either the WSP refused to accept the addition

while WSC A was accessing the data or it created a temporary set for the WSC A to access and the modification by the
WSC B was accepted, but not visible in the temporary static set created for WSC A. In the example above the WSP
created a temporary set an so returned the same time stamp in all responses containing data from that temporary set.

Liberty Alliance Project

41

1738

1739
1740
1741

1742

1743
1744
1745
1746
1747
1748
1749
1750

1751
1752
1753
1754
1755

1756

1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788

1789

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

5. Creating Data Objects

A WSC can create new data objects to a resource when a service type supports multiple objects of the same type. If
there is only one object of a type, that object exists always, when a resource containing it exists. The data objects can
later be modified and deleted.

5.1. <Create> Element

The <Create> element is used to create new data objects, not new data inside existing data objects. The content of
a data object is created, deleted and modified usingMedify>. The right resource, to which a new data object

is added, is selected using security mechanism and possialgetidentity> header. The<Createltem> element

specifies the type of the new object (itgectType XML attribute) and initial content for the new object (inside the
<NewData>element). The<NewData>MAY contain some local addressing element that further qualifies the object

that is being created. For example, when adding an address card, service specification may specify an address card
identifier that differentiates the object from other similar objects (or this identifier may be assigned automatically by
the service, in which case thdResultQuery>may come handy to discover which identifier was assigned).

<xs:attributeGroup name="CreateltemAttributeGroup">
<xs:attribute ref="dst:objectType" use="optional"/>
<xs:attribute name="id" use="optional" type="xs:ID"/>
<xs:attribute ref="lu:itemID" use="optional"/>
</xs:attributeGroup>

Figure 12. XML Attributes for Createltem

<xs:complexType name="CreateType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="dstref:Createltem" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="dstref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Createltem" type="dstref: CreateltemType"/>
<xs:complexType name="CreateltemType">
<xs:sequence>
<xs:element ref="dstref:NewData" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attributeGroup ref="dst: CreateltemAttributeGroup"/>
</xs:complexType>
<xs:element name="NewData" type="dstref: AppDataType"/>
<xs:complexType name="CreateResponseType">
<xs:complexContent>
<xs:extension base="dstref:DataResponseType"/>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="DataResponseType">
<xs:complexContent>
<xs:extension base="dst:DataResponseBaseType">
<xs:sequence>
<xs:element ref="dstref:ltemData" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

Figure 13. Reference Model for Create

Liberty Alliance Project

42

1790

1791
1792
1793

1794

1795

1796

1797
1798

1799
1800
1801
1802
1803
1804

1805
1806
1807
1808
1809
1810
1811
1812
1813

1814
1815
1816

1817

1818

1819
1820
1821
1822
1823
1824
1825
1826
1827
1828

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

5.2. <CreateResponse> Element

The <CreateResponse>element contains in addition to the mandatet$tatus> element possibleltemData>
elements, which carry requested data related to the data just created. For example, returned data could include a
unique ID assigned to the data object just created.

5.3. Processing Rules for Creating Data Objects

The common processing rules specified earlier MUST also be followedbésa®on 3.

5.3.1. Multiple <Createltem> Elements

One<Create>element can contain multipkeCreateltem> elements. The following rules specify how those must be
supported and handled:

1.AWSP MUST support oneCreateltem> element inside aCreate>and SHOULD support multiple. If a WSP
supports only ongCreateltem>element inside &Create>and the<Create>contains multiple<Createltem>
elements, the processing of the whelereate>MUST fail and a status code indicating failure MUST be returned
in the response. A more detailed status code with the \diultipleAllowed SHOULD be used in addition
to the top level status code. If a WSP supports multigBreateltem> elements inside &Create>, it MAY
register the urn:liberty:dst: multipleCreateltems discovery option keyword.

2.1f the processing of &Createltem> fails even partly due to some reason, depending on the service and/or a
WSP either the processing of the whal€reate> MUST fail or a WSP MUST try to achieve partial success.
The top level status codeailed or Partial MUST be used to indicate the failure (complete or partial) and a
more detailed second level status code SHOULD be used to indicate the reason for failing to completely process
the failed<Create>element. Furthermore, thef XML attribute of the<Status>element SHOULD carry the
value of theitemID of the failed<Createltem> element and in partial success cases it MUST carry this value.
The modifications made based on already processidateltem> elements of thecCreate>MUST be rolled
back in case of a complete failure. A WSP MUST NOT support multifilzeateltem> elements inside one
<Create>, if it cannot roll back and partial failure is not allowed.

3.When multiple <Createltem> elements inside on&Create> element are supported and partial success is
allowed, a WSC MUST use thiemID XML attribute in each<Createltem> element so that a WSP can
identify the failed parts, when it is returning status information for a partial success.

5.3.2. Only One Type of Data Object per <Createltem>
With one<Createltem> element a WSC can add only one type of data objects, but the amount of object may vary.

1.AWSP MUST support multiple data objects of the same type insidetevData>element of a<Createltem>
element, if the service can have multiple objects of that type, unless otherwise specified in a service specification.
If a data object inside &NewData>element is not of the type specified by thigectType XML attribute
of the <Createltem> containing the<NewData> element, the processing of thaCreateltem> MUST fail
and second level status co@djectTypeMismatch ~ SHOULD be used. If the data inside<dNewData> is
otherwise unacceptable to a WSP, the processing of@reateltem>MUST fail and second level status code
Invalidbata ~ SHOULD be used unless some better service or object type specific status code has been defined
in the service specification or in this specification. A data object might contaftEatension>element, which
has some data not specified in the service specification. A WSP might not support extensions and not accept that
data. This SHOULD be indicated with the second level status Eeti@sionNotSupported

Liberty Alliance Project

43

1829
1830
1831
1832
1833
1834

1835

1836
1837
1838

1839
1840
1841
1842
1843
1844

1845
1846
1847
1848
1849
1850

1851
1852

1853
1854
1855
1856
1857

1858

1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

1870

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2.1f there is no<NewData>element inside aCreateltem>, an empty data object of the type specified by the
objectType XML attribute MUST be created unless service specification requires that a object always has
some data, e.g., an identifier created by a WSC to be used to access that specific object instead of other objects
of the same type. If @aNewData>element is required inside <Createltem> element and it is missing, the
processing of thatCreateltem> MUST fail and second level status comliissingNewData should be used to

indicate this.
5.3.3. Handling commonAttributes and leafAttributes upon Creation
The common XML attributes belonging to the XML attribute groapsimonAttributes andleafAttributes are

mainly supposed to be written by the WSP hosting the data service. There are some additional rules for handling these
common XML attributes when data objects are created.

1.When any of theACG modifier , ACCTime or modificationTime XML attributes is used in a resource, the
WSP hosting the data service MUST keep their values up to date. When a data object is createdifithe
XML attribute MUST contain the ProviderID of the creator or have no value, andnthtificationTime
MUST define the time of the creation or have no value. ABEMUST define the XML attribute collection
context of the current value of a data element or have no value amsttib&ime MUST define the time, when
the value of theaACCwas defined or have no value.

2.1f the <NewData>containsmodifier , modificationTime or ACCTime XML attributes for any data element,
the WSP MUST ignore these and update the values based on other information than those XML attributes inside
the <NewData> provided by the WSC. If th&CCXML attribute is included for any data element, the WSP
MAY accept it, depending on how much it trusts the requesting service provider. The WSP MAY also accept the
id XML attribute provided inside theNewData>and some services MAY require that tidle XML attribute
MUST be provided by the requesting WSC.

3.Theid XML attribute MUST NOT be used as a global unique identifier. The value MUST be chosen so that it
works only as unique identifier inside the conceptual XML document.

4.When a data object is created based oxiCreate> request, the values of theodificationTime XML
attributes written by the WSP hosting the data service MAY be same for all elements of created object, but
there is no guarantee that they will be exactly the same. WhemdhiicationTime XML attribute is used
in container elements, the time of a modification MUST be propagated to all ancestor elements of the modified
element all the way up to the root element. So the root element has always the latest modification time.

5.3.4. WSC Might Mot Be Allowed to Add Certain Data or Any Data

When a WSP processes<&reateltem>, it MUST check, whether the resource owner (for example, the Principal)
has given consent to the requestor to create the data. To be able to check WSC-specific access rights, the WSP
MUST authenticate the WSC (sdaljertySecMech. If the consent check fails for any part of the requested data, the
WSP MUST NOT create data requested in #f@reateltem> element, even when such consent is missing only

for some subelement or XML attribute. The WSP MAY try to get consent from the Principal while processing
the request perhaps using an interaction service (for more information_igeetyInteracf). The processing of

a <Createltem> element MUST fall, if the creation of the data object was not allowed. The second level status
codeActionNotAuthorized MAY be used, if it is considered that the privacy of the owner of the resource is not
compromised. A WSP might check the access rights at a higher level, before getting to DST processing and MAY
return an ID-* Fault Message jbertySOAPBInding and not process theCreate>element at all, if the requesting

WSC is not allowed to create data objects.

5.3.5. WSP May Place Some Restrictions for the data It Is Hosting

Liberty Alliance Project

44

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

1871 1.The schemata for different data services may have some elements for which there is not an exact upper limit

1872 on how many can exist. For practical reasons, implementations may set some limits. If a request tries to
1873 add more elements than a WSP supports, the WSP will not accept the new element(s) and the processing of
1874 the <Createltem> element MUST fail. The WSP should use a second level status odereElements to

1875 indicate this specific case. If a WSC tries to add more data object than a WSP supports, the processing of the
1876 <Createltem>element MUST fail and the second level status dedioreObjects to indicate this. If only one

1877 data object of the type specified by thigectType is allowed and a WSC tries to create it although it already

1878 exists, the correct second level status codexistsAlready

1879 2.The schemata for different data services may not specify the length of elements and XML attributes especially

1880 in the case of strings. If a request tries to add longer values for data elements or XML attributes than a WSP
1881 supports, the WSP may not accept the data and the processing<@ tbateltem> element will fail. The WSP
1882 should use a second level status codeaTooLong to indicate this.

Liberty Alliance Project

45

1883

1884

1885

1886
1887

1888
1889
1890
1891

1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902

1903

1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927

1928

1929

1930
1931

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

6. Deleting Data Objects

A WSC can delete existing data objects, when a service supports multiple data objects of the same type.

6.1. <Delete> Element

The<Delete>element is used to delete existing data objects, not data inside a data object, but whole objects including
the contained data. If only the data inside an object should be deleted, a WSC maistadify> for it.

The data objects to be deleted are referred to either usingréefined XML attribute or theobjectType

XML attribute and the<Select>element in the<Deleteltem>element. = Concurrent updates are handled using
thenotChangedSince XML attribute inside the<Deleteltem>element. If the data has been modified since the time
specified by theotChangedSince XML attribute, the deletion MUST NOT be done.

<xs:complexType name="DeleteltemBaseType">
<xs:attributeGroup ref="dst:selectQualif"/>
<xs:attribute name="notChangedSince" use="optional" type="xs:dateTime"/>
<xs:attribute name="id" use="optional" type="xs:|D"/>
<xs:attribute ref="lu:itemID" use="optional"/>

</xs:complexType>

<xs:complexType name="DeleteResponseType">
<xs:complexContent>

<xs:extension base="lu:ResponseType"/>

</xs:complexContent>

</xs:complexType>

Figure 14. Utility Schema for Delete

<xs:complexType name="DeleteType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Deleteltem" type="dstref: DeleteltemType"/>
<xs:complexType name="DeleteltemType">
<xs:complexContent>
<xs:extension base="dst:DeleteltemBaseType">
<xs:sequence>
<xs:element ref="dstref:Select" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="DeleteResponseType">
<xs:complexContent>
<xs:extension base="lu:ResponseType"/>
</xs:complexContent>
</xs:complexType>

Figure 15. Reference Model for Delete

6.2. <DeleteResponse> Element

The<DeleteResponserlement contains mainly the mandata$tatus>element. No time stamp is returned as the
data does not exist after processing the request.

Liberty Alliance Project

46

1932

1933

1934

1935
1936

1937
1938
1939
1940
1941
1942

1943
1944
1945
1946
1947
1948
1949
1950
1951

1952
1953
1954

1955

1956
1957

1958
1959
1960
1961

1962
1963
1964

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

6.3. Processing Rules for Deletion

The common processing rules specified earlier MUST also be followe®bésemn 3.

6.3.1. Supporting Multiple <Deleteltem> Elements

One<Delete>element can contain multipkeDeleteltem>elements. The following rules specify how those must be
supported and handled:

1.A WSP MUST support ongDeleteltem>element inside &Delete>and SHOULD support multiple. If a WSP
supports only ongDeleteltem>element inside &Delete>and the<Delete>contains multiple<Deleteltem>
elements, the processing of the wheRelete>MUST fail and a status code indicating failure MUST be returned
in the response. A more detailed status code with the \divultipleAllowed SHOULD be used in addition
to the top level status code. If a WSP supports multidieleteltem> elements inside &Delete> it MAY
register the urn:liberty:dst: multipleDeleteltems discovery option keyword.

2.1f the processing of &Deleteltem>fails even partly due to some reason, depending on the service and/or a WSP
either the processing of the whot®elete>MUST fail or a WSP MUST try to achieve partial success. The top
level status cod€ailed or Partial MUST be used to indicate the failure (complete or partial) and a more
detailed second level status code SHOULD be used to indicate the reason for failing to completely process the
failed <Delete>element. Furthermore, thef XML attribute of the<Status>element SHOULD carry the
value of theitemID of the failed<Deleteltem>element and in partial success cases it MUST carry this value.
The deletions made based on already procesBedeteltem>elements of theDelete>MUST be rolled back in
case of a complete failure. A WSP MUST NOT support multgleleteltem>elements inside oneDelete>
if it cannot roll back and partial failure is not allowed.

3.When multiple<Deleteltem>elements inside oneDelete>element are supported and partial success is allowed,
aWSC MUST use thigemID XML attribute in each<Deleteltem>element so that a WSP can identify the failed
parts, when it is returning status information for a partial success.

6.3.2. Only One Type of Data Object May Be Deleted with One <Deleteltem>

With one<Deleteltem>element a WSC can delete only one type of data objects upledsfined XML attribute
is used, but the amount of object may vary.

1. All data objects matching the selection criteria given ileleteltem>, eitherpredefined XML attribute or
objectType XML attribute and<Select>element, MUST be deleted. If all matching can not be deleted, the
processing of thatDeleteltem>MUST fail and appropriate second level status code should be used to indicate
the reason. If &Deleteltem>fails, a WSP MUST NOT delete any data based on it.

2.1f there is no<Select>element inside &Deleteltem>, all data objects of the type specified by tigectType

XML attribute MUST be deleted. A service specification may requiretiSaiect>element is always used, when
thepredefined XML attribute is not used.

Liberty Alliance Project

47

1965

1966

1967
1968
1969
1970
1971
1972
1973
1974

1975

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

6.3.3. Avoiding Deletion of Data if It Has Changed In-between
A WSC might want to avoid deleting data, if someone else has changed it in-between.

When thenotChangedSince XML attribute is present, the deletions specified byleleteltem>element MUST

NOT be made, if any part of the data to be deleted has changed since the time specifieddgHhegedSince

XML attribute. The second level status cadedifiedSince ~ MUST be used to indicate that the deletion was not
done because the data has been modified since the time specifiechbytiengedSince XML attribute. If a WSP

does not support processing of this XML attribute properly, it MUST NOT make any changes and it MUST return the
second level status co@angeHistoryNotSupported . Ifa WSP supports thisotChangedSince XML attribute,

it MUST also support thehangedSince XML attribute of the<Queryltem> element anéotChangedSince XML
attribute of the<Modifyltem> .

6.3.4. WSC Might Not Be Allowed to Delete Certain or Any Data

When a WSP processes®eleteltem> it MUST check, whether the resource owner (for example, the Principal)
has given consent to the requestor to delete the data. To be able to check WSC-specific access rights, the WSP MUST
authenticate the WSC (sekilpertySecMechy. If the consent check fails for any part of the data requested to be
deleted, the WSP MUST NOT delete data requested irredeteltem>element, even when such consent is missing
only for some subelement or XML attribute. The WSP MAY try to get consent from the Principal while processing
the request, for example, using an interaction service (for more information_kestyinteracf). The processing

of a <Deleteltem>element MUST fail, if the deletion of a data object was not allowed. The second level status
codeActionNotAuthorized MAY be used, if it is considered that the privacy of the owner of the resource is not
compromised. A WSP might check the access rights at a higher level, before getting to DST processing and MAY
return an ID-* Fault Messagéd pertySOAPBInding and not process theDelete>element at all, if the requesting

WSC is not allowed to delete data objects.

Liberty Alliance Project

48

1987

1988
1989
1990
1991

1992

1993

1994

1995
1996

1997
1998
1999
2000

2001
2002
2003

2004
2005
2006
2007

2008
2009
2010

2011
2012

2013
2014
2015

2016
2017
2018
2019
2020
2021
2022

2023

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

7. Modifying Data

The data objects stored by a data service can be modified. Usually the Principal can make these modifications directly
at the data service using the provided user interface, but these modifications may also be made by other service
providers using thecModify> element. It is not possible to create or delete data objects witkMuadify>, just

change of existing data objects.

7.1. <Modify> Element

The<Modify> element has two types of sub-elements.
» <Modifyltem> elements specify which data elements of the specified resource should be modified and how.

« <ResultQuery> elements can be included, when a WSC wants, for example, to get back data related to the
modifications it just made.

The objectType XML attribute and the<Select>element inside aModifyltem> element specifies the data this
modification should affect. TheSelect>element is not needed when a resource in a data service has only one data
object of the type specified with tlbjectType XML attribute and the whole content of that data object is modified.

If a data service supports only onbjectType , this XML attribute may be omitted.

The <NewData>subelement okModifyltem> defines the new values for the data addressed byljeetType
XML attribute and the<Select>element. The new values, specified inside {iNewData>element, replace any
existing selected data, if thwerrideAllowed XML attribute of the<Modifyltem> element is set tGrue .

If the <NewData>element does not exist or is empty, it means than the selected current data values should be removed.
Note that whole data object can be deleted only with a sepabétete>message, not witkModify>. The default

value for theoverrideAllowed XML attribute isFalse , which means that theModifyltem> is only allowed to

add new data to a data object, not to remove or replace existing data of a data object.

The notChangedSince XML attribute is used to handle concurrent updates. Whemtit@hangedSince XML
attribute is present, a modification is allowed to be done only if the data to be modified has not changed since the time
specified by the value of th@tChangedSince XML attribute.

The <Modifyltem> element MUST also have themID XML attribute, when multiple<Modifyltem> elements
are included in oneModify> element and partial failure is allowed so that failed parts can be identified.

A <Modify> may include<ResultQuery> elements, if a WSC wants to get back data it is just modifying to, for
example, find out the details, was all the new data accepted, or get back possible metadata a WSP might have added
to the modified data.

<xs:attributeGroup name="ModifyltemAttributeGroup">
<xs:attributeGroup ref="dst:selectQualif"/>
<xs:attribute name="notChangedSince" use="optional" type="xs:dateTime"/>
<xs:attribute name="overrideAllowed" use="optional" type="xs:boolean" default="0"/>
<xs:attribute name="id" use="optional" type="xs:ID"/>
<xs:attribute ref="lu:itemID" use="optional"/>

</xs:attributeGroup>

Figure 16. XML Attributes for Modify

Liberty Alliance Project

49

2048

2049
2050
2051
2052

2053
2054
2055
2056

2057

2058

2059

2060
2061
2062
2063
2064
2065

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

<xs:complexType name="ModifyType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="dstref:Modifyltem" minOccurs="1" maxOccurs="unbounded"/>

<Ixs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Modifyltem" type="dstref:ModifyltemType"/>
<xs:complexType name="ModifyltemType">
<xs:sequence>

</xs:sequence>
<xs:attributeGroup ref="dst:ModifyltemAttributeGroup"/>
</xs:complexType>
<xs:complexType name="ModifyResponseType">
<xs:complexContent>
<xs:extension base="dstref:DataResponseType"/>
</xs:complexContent>
</xs:complexType>

Figure 17. Reference Model for Modify

7.2. <ModifyResponse> Element

The <ModifyResponse>element contains theStatus> element, which describes whether or not the requested
modification succeeded. There is also a possible time stamp XML attribute, which provides a time value that can
be used later to check whether there have been any changes since this modificatioriteamd@ef XML attribute

to map the<ModifyResponse>elements to theModify> elements in the request.

A <ModifyResponse>may also contaircltemData> elements which contain data requested wikesultQuery>
elements. OnegltemData> element MUST NOT contain more data than requested withk&esultQuery>element.
Note that a WSP MAY return data using tikkemData> element even when a WSC did not ask for it, if a WSP thinks
that a WSC needs that data, e.g., to access it later on.

7.3. Processing Rules for Modifications

The common processing rules specified earlier MUST also be followe®Gesamn 3.

7.3.1. Multiple <Modifyltem> Elements

1.A WSP MUST support ongModifyltem> element inside &Modify> and SHOULD support multiple. If the
<Modify> contains multiple<Modifyltem> elements and the WSP supports only eidodifyltem> element
inside a<Modify>, the processing of the whokeModify> MUST fail and a status code indicating failure
MUST be returned in the response. The val@MultipleAllowed SHOULD be used for the second level
status code. If a WSP supports multiptdlodifyltem> element inside aModify>, it MAY register the
urn:liberty: dst:multipleModifyltem discovery option keyword.

Liberty Alliance Project

50

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2066 2.1f the processing of aModifyltem> fails even partly due to some reason, depending on the service and/or a

2067 WSP either the processing of the whealslodify> MUST fail or a WSP MUST try to achieve partial success.

2068 The top level status cod&iled or Partial MUST be used to indicate the failure (complete or partial) and a
2069 more detailed second level status code SHOULD be used to indicate the reason for failing to completely process
2070 the failed<Modify> element. Furthermore, thef XML attribute of the<Status>element SHOULD carry the

2071 value of theitemID of the failed<Modifyltem> element and in partial success cases it MUST carry this value.
2072 The modifications made based on already procesbémtlifyltem> elements of theModify> MUST be rolled

2073 back in case of a complete failure. A WSP MUST NOT support mulipodifyltem> elements inside one

2074 <Modify>, if it cannot roll back and partial failure is not allowed.

2075 3.When multiple<Modifyltem> elements inside ongModify> element are supported and partial success is
2076 allowed, a WSC MUST use thiiemID XML attribute in each<Modifyltem> element so that a WSP can
2077 identify the failed parts, when it is returning status information for a partial success.

2078 7.3.2. What Exactly Is Modified

2079 What is modified and how depends on a number of parameters including the valug8&iket>element, the content
2080 of the provideckNewData>element, the value of theverrideAllowed XML attribute, and the current content of
2081 the underlying conceptual XML document.

2082 1.When adding new data, theSelect>element will point in the conceptual XML document to an element which

2083 does not exist yet. The new element is added as a result of processiigdidédyltem> element. In such cases,
2084 when the ancestor elements of the new element do not exist either, they MUST be added as part of processing of
2085 the<Modifyltem> element so that processing could be successful.

2086 2.1f the <Select>points to multiple places and there isilewData>element with new values, the processing of the

2087 <Modifyltem> MUST fail because it is not clear where to store the new data. If thered®NewvData>element
2088 and theoverrideAllowed XML attribute is set toTrue , then the processing afModifyltem> can continue
2089 normally, because it is acceptable to delete multiple data elements at once (for example, all AddressCards).

2090 3.When theoverrideAllowed is set toFalse or is missing, the<NewData>element MUST be present as new

2091 data should be added. If tktNewData>element is missing in this case, the processing okiedifyltem>
2092 MUST fail and the second level status cadissingNewDataElement ~ SHOULD be returned in addition to top
2093 level status code.

2094 4.When there is theeNewData> element with new values and th&Select>points to existing information, the

2095 processing of theModifyltem> MUST fail, if the overrideAllowed XML attribute is not set ta’rue . When
2096 theoverrideAllowed XML attribute does not exist or is set Ealse , the new data in theNewData>element
2097 can only be accepted in two cases: either there is no existing element to whichdleet>points, or there can be
2098 multiple data elements of the same type. This means that, #3leéect>points to an existing container element,
2099 which has a subelement, and only one such container element can exidtjaddyltem> MUST fail, even if
2100 the only subelement the container element has insideNteevData>does not yet exist in the conceptual XML
2101 document. The second level status cadstsAlready SHOULD be used to indicate in details the reason for
2102 the failure in addition to the top level status code. The lack of those other sub-elements insitietieata>
2103 means that they should be removed, which is only possible whemideAllowed XML attribute equals to
2104 True .

2105 5.When there can be multiple elements of the same type, the addition of a new element MUST fail, if there exists

2106 already an element of same type have the same value of the distinguishing part. In the case of a personal profile
2107 service, adding a newAddressCard> element MUST falil, if there already exists aAddressCard> element

2108 which has and XML attribute of the same value as the provided nedddressCard>element. The second

2109 level status codg&xistsAlready SHOULD also be used to indicate the detailed reason for failure.

Liberty Alliance Project

51

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2110 6.When all or some of the data inside thRewData>element is not supported by the WSP, or the provided data is

2111 not valid, the processing of the whotdodifyltem> SHOULD fail and second level status cadealidData

2112 SHOULD be returned in the response.

2113 7.When the<Modifyltem> element tries to extend the service either by pointing to a new data type behind an
2114 <Extension> element with the<Select>element, or having new sub-elements undek&mtension>element

2115 inside the<NewData>element and the WSP does not support extension in general or for the requesting party, it
2116 SHOULD be indicated in the response message with the second level statiBxod@®nNotSupported

2117 8.When the WSP supports extensions, but does not accept the contenk8tleet>or <NewData> then second

2118 level status codesvalidSelect andinvalidData ~ SHOULD be used as already described.

2119 7.3.3. Handling commonAttributes and leafAttributes in Modify

2120 The common XML attributes belonging to the XML attribute groapsimonAttributes andleafAttributes are

2121 mainly supposed to be written by the WSP hosting the data service. There are some additional rules for handling
2122 these common XML attributes in case of modifications.

2123 1.When any of theACG modifier , ACCTime or modificationTime XML attributes is used in a resource, the

2124 WSP hosting the data service MUST keep their values up to date. When data is modifiedditee MUST
2125 contain the ProviderlID of the modifier or have no value, andiheéificationTime MUST define the time of
2126 the modification or have no value. TRe&CMUST define the XML attribute collection context of the current
2127 value of a data element or have no value anda#ieTime MUST define the time, when the current value of the
2128 ACCwas defined or have no value.

2129 2.1f the <NewData>containsmodifier , modificationTime or ACCTime XML attributes for any data element,

2130 the WSP MUST ignore these and update the values based on other information than those XML attributes inside
2131 the <NewData> provided by the WSC. If th&CCXML attribute is included for any data element, the WSP

2132 MAY accept it, depending on how much it trusts the requesting service provider. The WSP MAY also accept the
2133 id XML attribute provided inside th&NewData>and some services MAY require that tidle XML attribute

2134 MUST be provided by the requesting service provider.

2135 3.Theid XML attribute MUST NOT be used as a global unique identifier. The value MUST be chosen so that
2136 it works only as unique identifier inside the conceptual XML document, and the value iof tK¥IL attribute

2137 SHOULD be kept the same even if the element is otherwise modified. A WSP MAY not even allow changing the
2138 value of theid XML attribute or any other XML attribute used to distinguish elements with the same name from
2139 each other.

2140 4.When data is modified based on thklodify> request, the values of theodificationTime XML attributes

2141 written by the WSP hosting the data service MAY be same for all inserted and updated elements, but there is
2142 no guarantee that they will be exactly the same. WhemtbdificationTime XML attribute is used by a

2143 data service, the WSP MUST keep it up to date to indicate the time of the latest modification of an element
2144 and update it, when ever a modification is done either usingihedify> request or some other way. When

2145 the modificationTime XML attribute is used in container elements, the time of a modification MUST be
2146 propagated to all ancestor elements of the modified element all the way up to the root element.

2147 7.3.4. Accounting for Concurrent Updates

2148 Accounting for concurrent updates is handled usingithi€hangedSince XML attribute inside the<Modifyltem>
2149 element.

2150 1.When thenotChangedSince XML attribute is present, the modifications specified by #tidodifyltem>
2151 element MUST NOT be made, if any part of the data to be modified has changed since the time specified by
2152 thenotChangedSince XML attribute.

Liberty Alliance Project

52

2153
2154
2155
2156
2157

2158

2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169

2170

2171
2172
2173
2174
2175

2176
2177
2178
2179
2180

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2.The second level status cotadifiedSince MUST be used to indicate that the modification was not done
because the data has been modified since the time specified tyt@hengedSince XML attribute. If a WSP
does not support processing of this XML attribute properly, it MUST NOT make any changes and it MUST return
the second level status co@iangeHistoryNotSupported . If a WSP supports thisotChangedSince XML
attribute, it MUST also support thehangedSince XML attribute of the<Queryltem> element.

7.3.5. WSC Might Not Be Allowed to Make Only Certain or Any Modifications

When a WSP processes th®lodifyltem>, it MUST check, whether the resource owner (for example, the Principal)
has given consent to the requestor to modify the data. To be able to check WSC-specific access rights, the WSP
MUST authenticate the WSC (seleljertySecMech). If the consent check fails for any part of the requested data,

the WSP MUST NOT make the modifications requested in<thtdifyltem> element, even when such consent

is missing only for some subelement or XML attribute. The WSP MAY try to get consent from the Principal
while processing the request perhaps using an interaction service (for more informatihibseylpteract). The
processing of theModifyltem> element MUST fail, if the modification was not allowed. The second level status
codeActionNotAuthorized MAY be used, if it is considered that the privacy of the owner of the resource is not
compromised. A WSP might check the access rights at a higher level, before getting to DST processing and MAY
return an ID-* Fault Messagé jbertySOAPBInding and not process theModify> element at all, if the requesting

WSC is not allowed to modify the datdpara>

7.3.6. WSP May Impose Some Restrictions for the Data It Is Hosting

1.The schemata for different data services may have some elements for which there is not an exact upper limit
on how many can exist. For practical reasons, implementations may set some limits. If a request tries to add
more elements than a WSP supports, the WSP will not accept the new element(s) and the processing of the
<Modifyltem> element MUST fail. The WSP should use a second level status I¢oklereElements to
indicate this specific case.

2.The schemata for different data services may not specify the length of elements and XML attributes especially
in the case of strings. The WSP may also have limitations of this kind. If a request tries to add longer data
elements or XML attributes than a WSP supports, the WSP may not accept the data and the processing of the
<Modifyltem> element will fail. The WSP should use a second level status batt&ooLong to indicate this
specific case.

7.4. Examples of Modifications

This example adds a home address to the personal profile of a Principal:

<hp:Modify xmiIns:hp="urn:liberty:hp:2005-07">
<hp:Modifyltem>
<hp:Select>/hp:HP/hp: AddressCard</hp: Select>
<hp:NewData>
<hp:AddressCard id='98123">
<hp:AddressType>
urn:liberty:hp:addrType:home
</hp:AddressType>
<hp:Address>
<hp:PostalAddress>
c/o Carolyn Lewis$2378 Madrona Beach Way North
</hp:PostalAddress>
<hp:PostalCode>98503-2341</hp :PostalCode>
<hp:L>Olympia</hp:L>
<hp:ST>wa</hp:ST>
<hp:C>us</hp:C>
</hp:Address>
</hp:AddressCard>
</hp:NewData>
</hp:Modifyltem>
</hp:Modify>

Liberty Alliance Project

53

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

The following example replaces the current home address with a new home address in the personal profile of a
Principal. Please note that this request will fail if there are two or more home addresses in the profile, because it
is not clear in this request, which of those addressed should be replaced by this address. In such &cagdlthe
attribute should be used to explicitly point which of the addresses should be changed.

<hp:Modify xmiIns:hp="urn:liberty:hp:2005-07">
<hp:Modifyltem overrideAllowed="True">
<hp:Select>
/hp:HP/hp:AddressCard
[hp:AddressType="urn:liberty:id-sis-hp:add rType:home’]
</hp:Select>
<hp:NewData>
<hp:AddressCard id="98123">
<hp:AddressType>
urn:liberty:id-sis-hp:addrType:home
</hp:AddressType>
<hp:Address>
<hp:PostalAddress>
c/lo Carolyn Lewis$2378 Madrona Beach Way
</hp:PostalAddress>
<hp:PostalCode>98503-2342</hp: PostalCode >
<hp:L>Olympia</hp:L>
<hp:ST>wa</hp:ST>
<hp:C>us</hp:C>
</hp:Address>
</hp:AddressCard>
</hp:NewData>
</hp:Modifyltem>
</hp:Modify>

This example replaces the current address identified Iy arf’98123 with a new home address, if that address has
not been modified since 12:40:01 21th January 2003 UTC.

<hp:Modify xmins:hp="urn:liberty:hp:2005-07">
<hp:Modifyltem
notChangedSince="2003-01-21T12:40:012"
overrideAllowed="True">
<hp:Select>/hp:HP/hp: AddressCard[@hp:id="98123 ']</hp: Select>
<hp:NewData>
<hp:AddressCard id="98123">
<hp:AddressType>
urn:liberty:id-sis-hp:addrType:ho me
</hp:AddressType>
<hp:Address>
<hp:PostalAddress>
c/o Carolyn Lewis$2378 Madrona Beach Way South
</hp:PostalAddress>
<hp:PostalCode>98503-2398</hp: PostalCode>
<hp:L>Olympia</hp:L>
<hp:ST>wa</hp:ST>
<hp:C>us</hp:C>
</hp:Address>
</hp:AddressCard>
</hp:NewData>
</hp:Modifyltem>
</hp:Modify>

Liberty Alliance Project

54

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2263 The following example adds another home address to the personal profile of a Principél. ig\provided for the
2264 new address.

2265 <hp:Modify xmins:hp="urn:liberty:hp:2005-07">
2266 <hp:Modifyltem>

2267 <hp:Select>

2268 /hp:HP/hp:AddressCard

2269 [hp:AddressType="urn:liberty:id-sis-hp:ad drType:home’]
2270 </hp:Select>

2271 <hp:NewData>

2272 <hp:AddressCard id="12398">

2273 <hp:AddressType>

2274 urn:liberty:id-sis-hp:addrType:home

2275 </hp:AddressType>

2276 <hp:Address>

2277 <hp:PostalAddress>1234 Beach Way</hp:PostalAddress>
2278 <hp:PostalCode>98765-1234</hp:PostalCode>
2279 <hp:L>Olympia</hp:L>

2280 <hp:ST>wa</hp:ST>

2281 <hp:C>us</hp:C>

2282 </hp:Address>

2283 </hp:AddressCard>

2284 </hp:NewData>

2285 </hp:Modifyltem>

2286 </hp:Modify>

2287

2288

2289 The following example removes all current home addresses from the personal profile of a Principal:

2290 <hp:Modify xmins:hp="urn:liberty:hp:2005-07">

2291 <hp:Modifyltem overrideAllowed="True">

2292 <hp:Select>

2293 /hp:HP/hp:AddressCard

2294 [hp:AddressType="urn:liberty:id-sis-hp:addrType: home’]
2295 </hp:Select>

2296 </hp:Modifyltem>

2297 </hp: Modify>

2298

2299

2300 The response for a validModify> is as follows:

2301 <hp:ModifyResponse

2302 xmins:hp="urn:liberty:hp:200 5-07"
2303 timeStamp="2003-03-23T03:40:00Z">
2304 <hp:Status code="OK"/>

2305 </hp:ModifyResponse>

2306

2307

Liberty Alliance Project

55

2308

2309
2310
2311

2312
2313
2314
2315

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

8. WSF-1.1 Compatibility

This version (2.1) of DST was designed to work well with ID-WSF 2.0 specification family. Since it is a major version
upgrade, a decision was made to break the ID-WSF 1.1 compatibility, mainly by elimination <RéswurcelDs>
(see als®ection 3.§.

However, the two ID-WSF versions remain broadly compatiblébdrtyDiscd, Section 10 "ID-WSF 1.x Resource
Offering conveyed in an EPR" provides a method for constructiRgsourcelD>s from credentials as well as
making credentials and end points given knowledge of ReeourcelD . The frame work version header, see
[LibertySOAPBInding allows simultaneous support to be implemented at run time.

Liberty Alliance Project

56

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2316 9. Actions

2317 When SOAP action names are need, they SHOULD be formed by appendieiyice typ@ne of the Request names,
2318 i.e.,Create , Delete , Query, Modify , etc.

2319 Example

2320 urn:liberty:id-sis-dap:2005-10:dst-2.1: Query
2321
2322

Liberty Alliance Project

57

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2323 10. Checklist for Service Specifications

2324 The following is a checklist of issues which should be addressed by individual service type specifications. Such
2325 specifications should always state which optional features of the DST they support, in addition to defining more
2326 general things such as discovery option keywords anéé¢leetType XML type used by the service type. A service

2327 specification should complete this list with the specific values and statements required by the specification.

2328 For optional features, the language specified RFC2119 MUST be used to define whether these features are
2329 available for implementations and deployments. For example, specifying that a feature '"MAY’ be implemented by
2330 a WSP means that WSPs may or may not support the feature, and that WSCs should be ready to handle both cases.

2331 Default feature support policy is that all features, unless expressly waived by service specification, MUST be
2332 supported, but each feature MAY be disabled administratively or by configuration in a deployment (e.g., to provide
2333 read or write only service).

2334 1. Specify service type. Specify namespaces for the service if different from service type.

2335 2.Provide definition service schema including the methods as elements based on DST types. A service need not

2336 define every possible method supported by DST and it may define additional methods supported by service
2337 specific schema. The service may also rename some of the methods. If it does rename, it MUST state which DST
2338 method corresponds to the renamed method. There can be several service methods that map to one DST method.

2339 3.Enumerate object types

2340 4.DescribeAppDataType and its contents. The description can come in form of XML schema, or the description
2341 can simply describe the contents of the string that is to appear in elements derivedppbataType , i.e.,
2342 <NewData> <Data>, and<ItemData>. The data description may make allowance for different object types.

2343 5.DescribeSelectType and how it applies to various types of objects. If selects can not be described as a string,

2344 e.g., XPath can, the service may want to redefine the type using xs:redefine.
2345 It is possible that different query language or dialect is applied depending on which object type is being queried.
2346 If so, the service specification MUST resolve how to represent the different languages usBeieati®ype

2347 6. DescribeTestOpType , considering how to test all object types supported by the specification. It is possible that
2348 different test language or dialect is applied depending on which object type is being tested. If so, the service
2349 specification MUST resolve how to represent the different languages usintest@»Type

2350 7.DescribeSortType .

2351 8.Enumerate Methods and state the required level of support. The default set of methGdsate>, <Query>,
2352 <Modify>, and<Delete>

2353 Default method support policy is as follows

2354 a.All methods MUST be supported, but each method MAY be disabled administratively or by configuration
2355 in a deployment (e.g. to provide read only or write only service).

2356 b. If queries are disabled or access control makes it implausible that they succeed, discovery option keyword
2357 urn:liberty:dst:noQuery MUST be registered.

2358 c.If creates are disabled or access control makes it implausible that they succeed, discovery option keyword
2359 urn:liberty:dst:noCreate MUST be registered.

2360 d.If deletes are disabled or access control makes it implausible that they succeed, discovery option keyword
2361 urn:liberty:dst:noDelete MUST be registered.

Liberty Alliance Project

58

2405

2406

2407

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

e.If modifies are disabled or access control makes it implausible that they succeed, discovery option keyword
urn:liberty:dst:noModify MUST be registered.

9. The discovery option keywords (sdeljertyDiscd) can either be listed with semantics here, or via a reference to
the correct chapter in the specification. Please note that the DST defines the following discovery option keywords
and the service specification must list which of these the service may use:

urn:liberty:dst:allPaths
urn:liberty:dst:can:extend
urn:liberty:dst:changeHistorySupported
urn:liberty:dst:contingentQueryltems
urn:liberty:dst:extend

urn:liberty:dst: fullXPath
urn:liberty:dst:multipleCreat eltems
urn:liberty:dst:multipleDeleteltems
urn:liberty:dst: multipleModif yltem
urn:liberty:dst:multipleQueryltems
urn:liberty:dst:multipleResourc es
urn:liberty:dst:noQuery
urn:liberty:dst:noCreate
urn:liberty:dst:noDelete
urn:liberty:dst:noModify
urn:liberty:dst:noPagination
urn:liberty:dst:noSorting
urn:liberty:dst:noStatic

10.Element uniqueness. State here how elements with the same name are distinguished from each other. For
example, thed XML attribute is used for<AddressCard> and <MsgContact> elements,xml:lang and
script XML attributes are used for localized elements, etc. Element uniqueness MUST consider different
object types.

11.Extension support. State whether extension is supported and if so, describe this support. A reference to the
specification chapter defining this can be given. For example, "New elements and discovery option keywords
MAY be defined, see chapter Y.X for more details."

Extensions support should discuss both data extension and protocol extension, inckExtiEigsion>elements
request and response messages.

The default policy for protocol extension is that mutually consenting WSC and WSP MAY use extension points
for implementation dependent purposes. Extension points that can be thus used are

a. XML any extension points contained#Extension>elements that are present in various protocol messages,
provided that the extension elements are namespace qualified.

b.If SelectType , TestOpType , or SortType is designated as unused by the service specification, then it
MAY be used for extension, provided that the extension data is

a.in URI format and use an assigned domain name as a component of the URI to ensure that extensions
do no collide with each other.

b.Namespace qualified XML document
12.Statement of optionality of query features (and their manifestation on discovery option keywords, see above):
a.Support testing

b. Support<ResultQuery>

Liberty Alliance Project

59

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

2408 c. Support sorting

2409 d. Support pagination of results

2410 e.Support static sets in pagination

2411 f. Support multiple<Query> elements

2412 g. Support multiple<Queryltem> elements

2413 h. Support multiple<Testltem> elements

2414 i. SupportchangedSince (and which formats) irkResultQuery>and<Queryltem>
2415 j- SupportincludeCommonAttributes

2416 13.Statement of optionality of create features (and their manifestation on discovery option keywords, see above):
2417 a.Support multiple<Create>elements
2418 14.Statement of optionality of delete features (and their manifestation on discovery option keywords, see above):
2419 a.Support multiple<Delete>elements

2420 15.Statement of optionality of modify features (and their manifestation on discovery option keywords, see above):

2421 a.Support multiple<Modify> elements

2422 b. Support multiple<Modifyltem> elements

2423 c. Support partial success. If multiptModifyltem> elements are supported, is partial success supported or
2424 are only atomic modifications allowed?

2425 d. SupportnotChangedSince

Liberty Alliance Project

60

Liberty Alliance Project:
Liberty ID-WSF Data Services Template

11. Schemata
11.1. DST Reference Model Schema

The formal schema for the reference model follows.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
targetNamespace="urn:liberty:dst: 2006-08:ref"
xmins:dstref="urn:liberty:dst:2006-08 :ref"
xmins:dst="urn:liberty:dst:2006-08"
xmins:lu="urn:liberty:util: 2006 -08"
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:import namespace="urn:liberty:dst:2006-0 8"
schemalocation="liberty-idwsf-dst-v2.1.xsd"/>
<xs:import namespace="urn:liberty:util:2006-08"
schemalocation="liberty-idwsf-utili ty-v2.0.xsd"/>
<l--sec(methods)-->
<xs:element name="Create" type="dstref:CreateType"/>
<xs:element name="CreateResponse" type="dstref:CreateResponseType"/>
<xs:element name="Query" type="dstref:QueryType"/>
<xs:element name="QueryResponse" type="dstref:QueryResponseType"/>
<xs:element name="Modify" type="dstref:ModifyType"/>
<xs:element name="ModifyResponse" type="dstref:ModifyResponseType"/>
<xs:element name="Delete" type="dstref:DeleteType"/>
<xs:element name="DeleteResponse" type="dstref:DeleteResponseType"/>
<l--endsec(methods)-->
<l--sec(redefs)-->
<xs:complexType name="SelectType">
<xs:simpleContent>
<xs:extension base="xs:string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="TestOpType">
<xs:simpleContent>
<xs:extension base="xs:string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="SortType">
<xs:simpleContent>
<xs:extension base="xs:string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="AppDataType">
<xs:simpleContent>
<xs:extension base="xs:string"/>
</xs:simpleContent>
</xs:complexType>
<l--endsec(redefs)-->
<l--sec(create)-->
<xs:complexType name="CreateType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="dstref:Createltem" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Createltem" type="dstref: CreateltemType"/>
<xs:complexType name="CreateltemType">
<xs:sequence>
<xs:element ref="dstref:NewData" minOccurs="0" maxOccurs="1"/>

Liberty Alliance Project

61

Version: 2.1

Liberty Alliance Project: Version:

Liberty ID-WSF Data Services Template

</xs:sequence>
<xs:attributeGroup ref="dst: CreateltemAttributeGroup"/>
</xs:complexType>
<xs:element name="NewData" type="dstref:AppDataType"/>
<xs:complexType name="CreateResponseType">
<xs:complexContent>
<xs:extension base="dstref:DataResponseType"/>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="DataResponseType">
<xs:complexContent>
<xs:extension base="dst:DataResponseBaseType">
<xs:sequence>
<xs:element ref="dstref:ltemData" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(create)-->
<l--sec(query)-->
<xs:complexType name="QueryType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
<xs:element ref="dstref: Testitem" minOccurs="0" maxOccurs="unbounded"/>
<Ixs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Testltem" type="dstref: TestltemType"/>
<xs:complexType name="TestltemType">
<xs:complexContent>
<xs:extension base="dst:TestltemBaseType">
<xs:sequence>
<xs:element name="TestOp" minOccurs="0" maxOccurs="1" type="dstref: TestOpType"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Queryltem" type="dstref:QueryltemType"/>
<xs:complexType name="QueryltemType">
<xs:complexContent>
<xs:extension base="dstref:ResultQueryType">
<xs:attributeGroup ref="dst: PaginationAttributeGroup"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(query)-->
<l--sec(queryresp)-->
<xs:complexType name="QueryResponseType">
<xs:complexContent>
<xs:extension base="dst:DataResponseBaseType">
<xs:sequence>
<xs:element ref="dst: TestResult" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="dstref:Data" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Data" type="dstref:DataType"/>
<xs:complexType name="DataType">
<xs:complexContent>
<xs:extension base="dstref:ltemDataType">
<xs:attributeGroup ref="dst: PaginationResponseAttributeGroup"/>
</xs:extension>
</xs:complexContent>

Liberty Alliance Project

62

21

Liberty Alliance Project:
Liberty ID-WSF Data Services Template

</xs:complexType>
<l--endsec(queryresp)-->
<l--sec(mod)-->
<xs:complexType name="ModifyType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>

<xs:element ref="dstref:Modifyltem" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="dstref:ResultQuery" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="Modifyltem" type="dstref:ModifyltemType"/>

<xs:complexType name="ModifyltemType">
<xs:sequence>

<xs:element ref="dstref: Select” minOccurs="0" maxOccurs="1"/>
<xs:element ref="dstref:NewData" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
<xs:attributeGroup ref="dst:ModifyltemAttributeGroup"/>
</xs:complexType>
<xs:complexType name="ModifyResponseType">
<xs:complexContent>
<xs:extension base="dstref:DataResponseType"/>
</xs:complexContent>
</xs:complexType>
<l--endsec(mod)-->
<l--sec(del)-->
<xs:complexType name="DeleteType">
<xs:complexContent>
<xs:extension base="dst:RequestType">
<xs:sequence>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="Deleteltem" type="dstref: DeleteltemType"/>

<xs:complexType name="DeleteltemType">
<xs:complexContent>
<xs:extension base="dst:DeleteltemBaseType">
<xs:sequence>

<xs:element ref="dstref:Select" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="DeleteResponseType">
<xs:complexContent>
<xs:extension base="lu:ResponseType"/>
</xs:complexContent>
</xs:complexType>
<l--endsec(del)-->
<l--sec(resqry)-->
<xs:element name="Select" type="dstref:SelectType"/>

<xs:element name="ResultQuery" type="dstref:ResultQueryType"/>

<xs:complexType name="ResultQueryType">
<xs:complexContent>
<xs:extension base="dst:ResultQueryBaseType">
<xs:sequence>

<xs:element ref="dstref:Select" minOccurs="0" maxOccurs="1"/>
<xs:element name="Sort" minOccurs="0" maxOccurs="1" type="dstref:SortType"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="ltemData" type="dstref:ltemDataType"/>

Liberty Alliance Project

63

Version: 2.1

Liberty Alliance Project:
Liberty ID-WSF Data Services Template

<xs:complexType name="ltemDataType">
<xs:complexContent>
<xs:extension base="dstref:AppDataType">
<xs:attributeGroup ref="dst:ltemDataAttributeGroup "/>
</xs:extension>
</xs:complexContent>
<Ixs:complexType>
<l--endsec(resqry)-->
</xs:schema>

11.2. DST Utility Schema

The formal utility schema follows.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
targetNamespace="urn:liberty:dst: 2006-08"
xmins:dst="urn:liberty:dst:2006-08"
xmins:lu="urn:liberty: util:2 006-08"
xmins:xml="http://www.w3.0rg/XML/1998/namespac e"
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:import nhamespace="urn:liberty:util:2006-08 "
schemalocation="liberty-idwsf-utility-v2.0.xsd"/>
<xs:import nhamespace="http://www.w3.0rg/XML/1998/namespace "
schemalocation="http://www.w3.0rg/2001/xml.xsd"/>
<l--sec(ca)-->
<xs:attribute name="id" type="lu:IDType"/>
<xs:attribute name="modificationTime" type="xs:dateTime"/>
<xs:attributeGroup name="commonAttributes">
<xs:attribute ref="dst:id" use="optional"/>
<xs:attribute ref="dst:modificationTime" use="optional"/>
</xs:attributeGroup>
<xs:attribute name="ACC" type="xs:anyURI"/>
<xs:attribute name="ACCTime" type="xs:dateTime"/>
<xs:attribute name="modifier" type="xs:string"/>
<xs:attributeGroup name="leafAttributes">
<xs:attributeGroup ref="dst:commonAttributes"/>
<xs:attribute ref="dst:ACC" use="optional"/>
<xs:attribute ref="dst: ACCTime" use="optional"/>
<xs:attribute ref="dst:modifier" use="optional"/>
</xs:attributeGroup>
<xs:attribute name="script" type="xs:anyURI"/>
<xs:attributeGroup name="localizedLeafAttributes">
<xs:attributeGroup ref="dst:leafAttributes"/>
<xs:attribute ref="xml:lang" use="required"/>
<xs:attribute ref="dst:script" use="optional"/>
</xs:attributeGroup>
<xs:attribute name="refreshOnOrAfter" type="xs:dateTime"/>
<xs:attribute name="destroyOnOrAfter" type="xs:dateTime"/>
<l--endsec(ca)-->
<l--sec(ct)-->
<xs:complexType name="DSTLocalizedString">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attributeGroup ref="dst:localizedLeafAttributes"/>
</xs:extension>
</xs:simpleContent>
<I/xs:complexType>
<xs:complexType name="DSTString">
<xs:simpleContent>
<xs:extension base="xs:string">

Liberty Alliance Project

64

Version: 2.1

Liberty Alliance Project:
Liberty ID-WSF Data Services Template

<xs:attributeGroup ref="dst:leafAttributes"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="DSTInteger">
<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attributeGroup ref="dst:leafAttributes"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="DSTURI">
<xs:simpleContent>
<xs:extension base="xs:anyURI">
<xs:attributeGroup ref="dst:leafAttributes"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="DSTDate">
<xs:simpleContent>
<xs:extension base="xs:date">
<xs:attributeGroup ref="dst:leafAttributes"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="DSTMonthDay">
<xs:simpleContent>
<xs:extension base="xs:gMonthDay">
<xs:attributeGroup ref="dst:leafAttributes"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<l--endsec(ct)-->
<l--sec(msgintf)-->
<xs:complexType name="RequestType">
<xs:sequence>
<xs:element ref="lu:Extension" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute ref="lu:itemID" use="optional"/>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
<xs:complexType name="DataResponseBaseType">
<xs:complexContent>
<xs:extension base="lu:ResponseType">
<xs:attribute name="timeStamp" use="optional" type="xs:dateTime"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<l--endsec(msgintf)-->
<l--sec(select)-->
<xs:element name="ChangeFormat">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ChangedElements"/>
<xs:enumeration value="CurrentElements"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:attribute name="changeFormat">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ChangedElements"/>
<xs:enumeration value="CurrentElements"/>
<xs:enumeration value="All"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

Liberty Alliance Project

65

Version: 2.1

Liberty Alliance Project:
Liberty ID-WSF Data Services Template

<xs:attribute name="objectType" type="xs:NCName"/>
<xs:attribute name="predefined" type="xs:string"/>
<xs:attributeGroup name="selectQualif">
<xs:attribute ref="dst:objectType" use="optional"/>
<xs:attribute ref="dst:predefined" use="optional"/>
</xs:attributeGroup>
<l--endsec(select)-->
<l--sec(resquery)-->
<xs:complexType name="ResultQueryBaseType">
<xs:sequence>
<xs:element ref="dst:ChangeFormat" minOccurs="0" maxOccurs="2"/>
</xs:sequence>
<xs:attributeGroup ref="dst:selectQualif"/>
<xs:attribute ref="lu:itemIDRef" use="optional"/>
<xs:attribute name="contingency" use="optional" type="xs:boolean"/>
<xs:attribute name="includeCommonAttributes" use="optional" type="xs:boolean" default="0"/>
<xs:attribute name="changedSince" use="optional" type="xs:dateTime"/>
<xs:attribute ref="lu:itemID" use="optional"/>
</xs:complexType>
<xs:attributeGroup name="ItemDataAttributeGroup">
<xs:attribute ref="lu:itemIDRef" use="optional"/>
<xs:attribute name="notSorted" use="optional">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Now"/>
<xs:enumeration value="Never"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute ref="dst:changeFormat" use="optional"/>
</xs:attributeGroup>
<l--endsec(resquery)-->
<l--sec(testitem)-->
<xs:complexType name="TestltemBaseType">
<xs:attributeGroup ref="dst:selectQualif"/>
<xs:attribute name="id" use="optional" type="xs:ID"/>
<xs:attribute ref="lu:itemID" use="optional"/>
</xs:complexType>
<xs:element name="TestResult" type="dst: TestResultType"/>
<xs:complexType name="TestResultType">
<xs:simpleContent>
<xs:extension base="xs:boolean">
<xs:attribute ref="lu:itemIDRef" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<l--endsec(testitem)-->
<l--sec(pagination)-->
<xs:attributeGroup name="PaginationAttributeGroup">
<xs:attribute name="count" use="optional" type="xs:nonNegativelnteger"/>
<xs:attribute name="offset" use="optional" type="xs:nonNegativelnteger" default="0"/>
<xs:attribute name="setID" use="optional" type="lu:IDType"/>
<xs:attribute name="setReq" use="optional">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Static"/>
<xs:enumeration value="DeleteSet"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:attributeGroup>
<xs:attributeGroup name="PaginationResponseAttributeGroup">
<xs:attribute name="remaining" use="optional" type="xs:integer"/>
<xs:attribute name="nextOffset" use="optional" type="xs:nonNegativelnteger" default="0"/>
<xs:attribute name="setID" use="optional" type="lu:IDType"/>
</xs:attributeGroup>
<l--endsec(pagination)-->

Liberty Alliance Project

66

Version: 2.1

Liberty Alliance Project:
Liberty ID-WSF Data Services Template

<l--sec(create)-->
<xs:attributeGroup name="CreateltemAttributeGroup">
<xs:attribute ref="dst:objectType" use="optional"/>
<xs:attribute name="id" use="optional" type="xs:ID"/>
<xs:attribute ref="lu:itemID" use="optional"/>
</xs:attributeGroup>
<l--endsec(create)-->
<l--sec(mod)-->
<xs:attributeGroup name="ModifyltemAttributeGroup">
<xs:attributeGroup ref="dst:selectQualif'/>
<xs:attribute name="notChangedSince" use="optional" type="xs:dateTime"/>
<xs:attribute name="overrideAllowed" use="optional" type="xs:boolean" default="0"/>
<xs:attribute name="id" use="optional" type="xs:ID"/>
<xs:attribute ref="lu:itemID" use="optional"/>
</xs:attributeGroup>
<l--endsec(mod)-->
<l--sec(del)-->
<xs:complexType name="DeleteltemBaseType">
<xs:attributeGroup ref="dst:selectQualif'/>
<xs:attribute name="notChangedSince" use="optional" type="xs:dateTime"/>
<xs:attribute name="id" use="optional" type="xs:ID"/>
<xs:attribute ref="lu:itemID" use="optional"/>
</xs:complexType>
<xs:complexType name="DeleteResponseType">
<xs:complexContent>
<xs:extension base="lu:ResponseType"/>
</xs:complexContent>
</xs:complexType>
<l--endsec(del)-->
</xs:schema>

Liberty Alliance Project

67

Version: 2.1

2851

2852

2853
2854

2855
2856
2857

2858
2859

2860
2861

2862
2863

2864
2865

2866
2867

2868
2869
2870

2871
2872

2873
2874
2875

Liberty Alliance Project: Version: 2.1
Liberty ID-WSF Data Services Template

References

Normative

[LibertyDisco] Hodges, Jeff, Cahill, Conor, eds. "Liberty ID-WSF Discovery Service Specification,” Version 2.0,
Liberty Alliance Project (30 July, 2006http://www.projectliberty.org/specs

[LibertySOAPBInding] Hodges, Jeff, Kemp, John, Aarts, Robert, Whitehead, Greg, Madsen, Paul, eds. "Lib-
erty ID-WSF SOAP Binding Specification,” Version 2.0, Liberty Alliance Project (30 July, 2006).
http://www.projectliberty.org/specs

[LibertyPAOS] Aarts, Robert, Kemp, John, eds. "Liberty Reverse HTTP Binding for SOAP Specification," Version
2.0, Liberty Alliance Project (30 July, 200&)ttp://www.projectliberty.org/specs

[LibertyInteract] Aarts, Robert, Madsen, Paul, eds. "Liberty ID-WSF Interaction Service Specification," Version 2.0,
Liberty Alliance Project (30 July, 2006Mttp://www.projectliberty.org/specs

[LibertySecMech] Hirsch, Frederick, eds. "Liberty ID-WSF Security Mechanisms Core," Version v2.0, Liberty
Alliance Project (30 July, 2006http://www.projectliberty.org/specs

[LibertyGlossary] Hodges, Jeff, eds. "Liberty Technical Glossary,” Version v2.0, Liberty Alliance Project (30 July,
2006). http://www.projectliberty.org/specs

[LibertyReg] Kemp, John, eds. "Liberty Enumeration Registry Governance," Version 1.1, Liberty Alliance Project (14
December, 2004http://www.projectliberty.org/specs

[Schemal-2] Thompson, Henry S., Beech, David, Maloney, Murray, Mendelsohn, Noah, eds. (28 October
2004). "XML Schema Part 1: Structures Second Edition," Recommendation, World Wide Web Consortium
http://mww.w3.0org/TR/xmlschema-1/

[RFC2119] S. Bradner "Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119, The Internet
Engineering Task Force (March 199%}tp://www.ietf.org/rfc/rfc2119.txt

[XML] Bray, Tim, Paoli, Jean, Sperberg-McQueen, C. M., Maler, Eve, Yergeau, Francois, eds. (04 February 2004).
"Extensible Markup Language (XML) 1.0 (Third Edition)," Recommendation, World Wide Web Consortium
http://www.w3.0rg/TR/2004/REC-xml-20040204

Liberty Alliance Project

68

http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.projectliberty.org/specs
http://www.w3.org/TR/xmlschema-1/
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2004/REC-xml-20040204

	Liberty ID-WSF Data Services Template
	Introduction
	Data Model
	Message Interface
	Querying Data
	Creating Data Objects
	Deleting Data Objects
	Modifying Data
	WSF-1.1 Compatibility
	Actions
	Checklist for Service Specifications
	Schemata

	References
	Normative

