SAML Profile Test Framework

Author: Rainer Horbe (City of Vienna)
Date: 10-Feb-2012
Document Status: Initial draft (0.2)

Scope and Purpose

Assure compliance of federation-facing interfaces of SAML actors

The SAML Profile Test Framework (referred here ,Framework") shall provide
(prospective) participants of federations a tool to assess their products and services for
interoperability and compliance with a specific SAML profile. It shall confine the SAML
WebSSO use case to the specifications and requirements of a specific deployment. A list
of deployment profiles related to the Kantara SAML 2.0 eGov Interoperability Profiles
can be found at the Kantara FI-WG Wiki? .

The Framework is designed as a community service that shall be provided as a kind of
cloud service with a common repository of test cases. Tests can use and contribute to
the repository thus resembling a crowd-sourced approach to testing.

The focus in the first phase is to provide test services to SPs. The rationale is for

portalverbund.at? that there is a significantly lager number of SPs than IdPs, and IdPs
usually have more experience with IAM than SPs.

Stakeholders
Stakeholders addressed by this effort are:

Stakeholder Concern

SAML Profile Owner Ensure that profile is adhered to; collect feedback
from testers to improve profile.

Federation Authority/Operator = Require entities to be profile compliant before new
or updates software is deployed.

Product vendor, Ensure product compliance with deployment

0SS supporter/contributor requirements; Reduce support requests by using test
suite to spot configuration errors.

IdP Operator Reduce integration effort with SPs

SP Operator Reduce integration efforts when connecting to
federations

IDM Initiatives (REFEDS, Improved SAML interoperability and adoption of

Kantara, Géant) federation technology

The drivers of this effort are Kantara Initiative, Géant, and the AG-IZ (Austrian
government’s eGov federation WG).

! http://kantarainitiative.org/confluence/display/fiwg/SAML+Interoperability+and+Deployment+Profiles
? Austrian G2G Federation



The first SAML profile to be implemented will be PVP2-S-Profile V2.1
(www.portalverbund.at)

Components

SAML testing overview

SAML 2.0 core,
protocol, bindings,
MD, conformance
profiles, etc.
(OASIS SSTC)

Deployment
specific test
plan

SAML Deployment
Profiles

Deployment
Metadata

other

Deployment
Parameteys

Test Case
Repository

manage

X

verify MD _get test data SAML Test Harness |«——— use
Tester
drive
SAML Unit Tester run > Test Target
(IdP/DS/SP)

< SAML Test Harness side > < Deployment side >

Test case repository (“Repo”)
It stores the test data that is used by the SAML Unit Tester to execute tests.
* SAML standards (from OASIS SSTC);
* SAML Deployment Profile (restricts and extends the SAML standards);
* Deployment metadata (provides specific values about the SAML actors);
¢ Other deployment parameters: data and decisions that are neither in the profile
nor in MD, but are needed to provide complete configurations; e.g. attribute sets
and values.
¢ Unit test cases that prove certain behavior and structures.
* Management information enabling Testers to manage test scenarios, results and
access rights.
The Repo shall be a common resource for many deployments. Test cases should be
shared and improved in a community effort, but SAML profiles, test cases, test
federations and test execution may differ for specific deployments. To support such a
model, a service-type test case repository is being proposed as a single instance for all
interested stakeholders.




Ideally, the repository should contain a superset of all test cases for all deployments to
be tested providing reasonable test coverage. Test cases can be grouped and
parameterized to address certain test scenarios. An extension and inheritance schema
could be used to organize multiple scenarios.

Test execution would be the task of deployment-specific infrastructure. The tester
would configure the test data and execute the tests. There should be no need to install
local instances of the test framework.

SAML Test Harness

This is a GUI application to manage the repo, invoke and analyze tests. Besides the
traditional functions of a test harness it shall manage:

parameterization of generic unit tests with site specific parameters
dependencies between operations (probably relying on python inheritance
mechanism)

useful categorization of test data that allows testers to quickly set up
comprehensive tests (although it is still a human effort to verify what
comprehensive actually means. Automated test coverage analysis will probably
be too complex.)

SAML Unit Tester

Invoked by the test harness for a specific unit test in a specified context, it emulates a
communication partner to the Test Target. E.g. if the test target is an IdP, the unit tester
emulates a web browser with a user and a SP.
Each unit test (internally called “operation”) comprises 3 groups:

1. Pre-interaction check

2.

Interaction

3. Post-interaction check
Each group is implemented as a sequence of Python classes that use pysaml2.
Sample unit tests that are currently implemented are:

AuthnRequest using HTTP POST expecting transient NamelD
AuthnRequest and then an AuthnQuery

SAML2 AuthnRequest using ECP and PAOS

AuthnRequest using HTTP-redirect followed by a logout

Test Categories
SAML actors to be tested are SP and IdP.

Metadata Correctness & Completeness

- Schema valid XML?

- Check on elements in unknown namespaces

- Warn on recommended but missing elements
- Certificate validity

- Endpoint availability

Protocol flow

- Support for different bindings

- Request formats (control of AuthnRequest elements)

- Response contents (attribute sets, attribute values and rules involving multiple
attributes)



- LoA including timeout compliance

Crypto properties

- Cipher support

- Signatures & TLS where required by profile

- trust anchors

- error handling on invalid, expired signatures and TLS-certs

Subject Attribute test
- Nameid
- Attribute

Other rules

- retain relay state between request/response

- execute access decision based on authContextClassRef (exact match)
- Metadata freshness rules obeyed?

Vulnerability Scan

- Signature und TLS cert validation

- XML-Signature Wrapping

- IMHO tests shoul include HTTP-server vulnerability scans like the OWASP 10



