
Maciej Machulak
m.p.machulak@ncl.ac.uk

1

OAuth Dynamic Binding – Draft 00

Terminology

resource server

A server capable of accepting and responding to protected resource requests.

client

An application obtaining authorization and making protected resource requests.

authorization server

A server capable of issuing tokens after successfully authenticating the resource owner and

obtaining authorization. The authorization server may be the same server as the resource server, or

a separate entity.

end-user authorization endpoint

The authorization server's HTTP endpoint capable of authenticating the end-user and obtaining

authorization.

token endpoint

The authorization server's HTTP endpoint capable of issuing tokens and refreshing expired tokens.

client identifier

An unique identifier issued to the client to identify itself to the authorization server. Client

identifiers may have a matching secret.

client registration endpoint

The authorization server's HTTP endpoint capable of issuing client identifiers and optional client

secrets.

Discovery of client registration endpoint
The client uses the [sitemeta] and [hostmeta] discovery mechanisms to learn about the URI of the

client registration endpoint at the authorization server at which the client wants to register. The

authorization server MUST provide a host-meta document containing:

- Link element with the following rel value of

http://oauth.net/as/registration (REQUIRED)

<XRD>

<Host>http://server.example.com</Host>

<Link rel="http://oauth.net/as/registration " href="http://server.example.com/register">

<Title>Client Registration Endpoint</Title>

</Link>

http://oauth.net/as/registration

Maciej Machulak
m.p.machulak@ncl.ac.uk

2

<!-- other content omitted -->

</XRD>

Overview
The dynamic client registration process results in the client being provisioned the client identifier

and an optional client secret. This process differs in the way the client interacts with the

authorization server but always results in the client receiving both client identifier and optional

client secret or an error response. This specification defines two different flows for obtaining

information from the client that is required before provision client with its credentials. These flows

are the Push Client Registration and Pull Client Registration. This specification defines both flows.

Push Client Registration
The Push Client Registration Flow works as following:

1. The client sends required parameters to the client registration endpoint. The client MUST

send its name, description and redirection URI and MAY send a URI to its icon.

2. The authorization server checks the data and returns a client identifier and an optional client

secret.

Client

Client Registration Request

Client Registration Response

Authorization

Server

Pull Client Registration
The Pull Client Registration Flow works as following:

1. The client sends its URI to the client registration endpoint.

2. The authorization server uses the [sitemeta] and [hostmeta] discovery mechanisms on this

URI in order to retrieve the host-meta document describing the client. The host-meta

document MUST contain the client’s name, description and redirection URI and MAY contain

a URI to the client’s icon.

Maciej Machulak
m.p.machulak@ncl.ac.uk

3

Client

Client Registration Request

Client Registration Response

Authorization

Server

Client Discovery

Host-Meta Document

The authorization server must support both flows but the client is only required to support any of

these two flows.

Push Client Registration

Client Registration Request
The client sends a JSON formatted document to the client registration endpoint. The client includes

the following parameters in the request:

- type (REQUIRED) – this parameter must be set to “push”

- name (REQUIRED)

- url (REQUIRED)

- description (REQUIRED)

- icon (OPTIONAL)

The client MAY include additional information in the request and the authorization server MAY

ignore this information.

TBS: type parameter names should be different

For example, the client sends:

POST /register HTTP/1.1

Host: server.example.com

Content-Type: application/json

{

 “type”:“push”,

 “name”:”Online Photo Gallery”,

 “url”:”http://onlinephotogallery.com”,

 “description”:”Not only uploading, but also editing capabilities!”,

Maciej Machulak
m.p.machulak@ncl.ac.uk

4

 “icon”:”http://onlinephotogallery.com/icon.png”

}

The parameters are included in the entity body of the HTTP request using the "application/json"

media type as defined by [RFC4627]. The parameters are serialized into a JSON structure by adding

each parameter at the highest structure level. Parameter names and string values are included as

JSON strings.

Client Registration Response
After receiving and verifying information received from the client, the authorization server issues the

client identifier and an optional client secret, and constructs the response by adding the following

parameters to the entity body of the HTTP response with a 200 status code (OK):

- client_id (REQUIRED)

- client_secret (OPTIONAL)

The parameters are included in the entity body of the HTTP response using the "application/json"

media type as defined by [RFC4627]. The parameters are serialized into a JSON structure by adding

each parameter at the highest structure level. Parameter names and string values are included as

JSON strings.

The authorization server MUST include the HTTP “Cache-Control” response header field with a value

of “no-store” in any response containing client_secret.

For example:

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

 "client_id":"5UO9XcL4TQTa",

 "client_secret":”WdRKN3zeTc20”

}

Error Message
If the request for registration is invalid or unauthorized, the authorization server constructs the

response by adding the following parameters to the entity body of the HTTP response with a 400

status code (Bad Request) using the “application/json” media type:

- error (REQUIRED)

- description (OPTIONAL)

HTTP/1.1 400 Bad Request

Content-Type: application/json

Cache-Control: no-store

{

Maciej Machulak
m.p.machulak@ncl.ac.uk

5

 "error":"unauthorized_client",

 "description":”This client is not on the white list of this Authorization Server”

}

TBS: We need standardized error codes.

Pull Client Registration

Client Registration Request
The client sends a JSON formatted document to the client registration endpoint. The client includes

the following parameters in the request:

- type (REQUIRED) – this parameter must be set to “pull”

- url (REQUIRED)

The client MAY include additional information in the request and the authorization server MAY

ignore this information.

For example, the client sends:

POST /register HTTP/1.1

Host: server.example.com

Content-Type: application/json

{

 “type”:“pull”,

 “url”:”http://onlinephotogallery.com”,

}

The parameters are included in the entity body of the HTTP request using the "application/json"

media type as defined by [RFC4627]. The parameters are serialized into a JSON structure by adding

each parameter at the highest structure level. Parameter names and string values are included as

JSON strings.

Client Discovery
The authorization server should evaluate this request and MAY perform a [sitemeta] and [hostmeta]

discovery mechanism on the provided URL to the host-meta document for the client. For example,

the authorization server sends:

GET /.well-known/host-meta HTTP/1.1

Host: server.example.com

The authorization server retrieves the host-meta document which MUST contain:

Maciej Machulak
m.p.machulak@ncl.ac.uk

6

- Property element with the following type value of

http://oauth.net/client/name (REQUIRED)

- Property element with the following type value of

http://oauth.net/client/description (REQUIRED)

- Link element with the following rel value of

http://oauth.net/client/redirect_uri (REQUIRED)

- Link element with the following rel value of

http://oauth.net/client/uri (REQUIRED)

- Link element with the following rel value of

http://oauth.net/client/icon (OPTIONAL)

For example:

<XRD>

<Host>http://onlinephotogallery.com</Host>

<Property type="http://oauth.net/client/name">Online Photo Gallery</Property>

<Property type="http://oauth.net/client/description">Not only uploading, but also editing

capabilities!</Property>

<Link rel="http://oauth.net/client/uri" href="http://onlinephotogallery.com">

<Title>Client URI</Title>

</Link>

<Link rel="http://oauth.net/client/redirect_uri" href="http://onlinephotogallery.com/cb">

<Title>Client Redirect URI</Title>

</Link>

<Link rel="http://oauth.net/client/icon" href="http://onlinephotogallery.com/icon.png">

<Title>Client Icon</Title>

</Link>

</XRD>

TBS: Change that to JRD

Client Registration Response
After receiving and verifying information retrieved from the client, the authorization server issues

the client identifier and an optional client secret, and constructs the response by adding the

following parameters to the entity body of the HTTP response with a 200 status code (OK):

- client_id (REQUIRED)

- client_secret (OPTIONAL)

The parameters are included in the entity body of the HTTP response using the "application/json"

media type as defined by [RFC4627]. The parameters are serialized into a JSON structure by adding

http://oauth.net/client/name
http://oauth.net/client/description
http://oauth.net/client/redirect_uri
http://oauth.net/client/uri
http://oauth.net/client/icon

Maciej Machulak
m.p.machulak@ncl.ac.uk

7

each parameter at the highest structure level. Parameter names and string values are included as

JSON strings.

The authorization server MUST include the HTTP “Cache-Control” response header field with a value

of “no-store” in any response containing the client_secret.

For example:

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

 "client_id":"5UO9XcL4TQTa",

 "client_secret":”WdRKN3zeTc20”

}

Unsuccessful Client Discovery
If the host-meta discovery was not successful, the authorization server constructs the response by

adding the following parameters to the entity body of the HTTP response with a 404 status code

(Not Found) using the “application/json” media type:

- error (REQUIRED) This parameter must be set to “hostmeta_error”

- description (OPTIONAL)

HTTP/1.1 404 Not Found

Content-Type: application/json

{

 "error":"hostmeta_error",

 "description":”The hostmeta document could not have been retrieved from the URL.”

}

Error Message
If the request for registration is invalid or unauthorized, the authorization server constructs the

response by adding the following parameters to the entity body of the HTTP response with a 400

status code (Bad Request) using the “application/json” media type:

- error (REQUIRED)

- description (OPTIONAL)

HTTP/1.1 400 Bad Request

Content-Type: application/json

Cache-Control: no-store

{

 "error":"unauthorized_client",

 "description":”This client is not on the white list of this Authorization Server”

}

Maciej Machulak
m.p.machulak@ncl.ac.uk

8

TBS: We need standardized error codes.

References
[sitemeta] Defining Well-Known Uniform Resource Identifiers (URIs) (RFC5785)

http://tools.ietf.org/html/rfc5785

[hostmeta] Web Host Metadata

http://tools.ietf.org/html/draft-hammer-hostmeta-13

http://tools.ietf.org/html/rfc5785
http://tools.ietf.org/html/draft-hammer-hostmeta-13

