
User-Managed Access (UMA)
Working Group

Eve Maler, WG chair
eve.maler@forgerock.com| @xmlgrrl

15 May 2018
http://tinyurl.com/umawg/ | @UMAWG

1

First: Shall we do a quick UMA
explainer?

2

News from the last year, in context

3

2015 2016 2017 2018

Mar ‘15: UMA V1.0 ratified
as Recommendations

Dec ‘15:
UMA V1.0.1

ratified as
Recommendations

Jul ‘17:
1st Public Comment/
Review period ends

Sep ‘17:
2nd Public Comment/

Review period ends

Jan ‘18: Final
Recom-

mendations
published

Specs refactored,
over 100 issues closed,
lots of implementation

input received, Disposition
of Comments doc written…

Jan ‘18:
UMA2

logo
Feb ‘18:
Charter
update

Jan ‘18: Draft
UMA Business
Model Report

published

May ‘18:
Keycloak

joins UMA2
vendors

Gluu and
ForgeRock

Some use cases/ecosystems involving UMA

• Financial
• UK Pensions Dashboard Project / OIX / Origo
• Examining suitability for a set of Open Banking use

cases
• IoT
• “ACE actors” architecture identifies requirements for

authorization to an RqP
• Healthcare
• Profiled in Health Relationship Trust (HEART) at

OpenID Foundation
• Part of the new OpenMedReady framework, along

with HEART

4

The new UMA business model defines how the UMA
protocol enables a license-based model for controlling
access rights to personal digital assets

5

Maps legal party roles to

technical entity roles

Use licenses and

contracts as legal devices

Extends the “ends” to model

many business relationships

On the docket for (the rest of) 2018

• Complete the business model and capture business scenarios
• Perform a business model POC
• Consider submitted UMA2 extensions
• Maintain UMA2 as required
• Promote UMA2 interoperability

6

OAuth, OIDC, and UMA2:
breaking it down
Find links to UMA2 specs and swimlanes at http://tinyurl.com/umawg/

It has helped to kill the “password anti-pattern”
OAuth is for constrained delegation to apps

Authorization
server

Resource
server

Resource
owner

Client

It has helped to kill the “password anti-pattern”
OAuth is for constrained delegation to apps

Authorization
server

Resource
server

Resource
owner

Client

Authorizes (consents) at run
time after authenticating, at
the AS

It has helped to kill the “password anti-pattern”
OAuth is for constrained delegation to apps

Authorization
server

Resource
server

Resource
owner

Client

Authorizes (consents) at run
time after authenticating, at
the AS

App gets consent based on the
API scopes it requested; it has
its own identity distinct from the
RO’s

It has helped to kill the “password anti-pattern”
OAuth is for constrained delegation to apps

Authorization
server

Resource
server

Resource
owner

Client

Authorizes (consents) at run
time after authenticating, at
the AS

Standard OAuth endpoints for
authorization and access token
issuance

App gets consent based on the
API scopes it requested; it has
its own identity distinct from the
RO’s

It has helped to kill the “password anti-pattern”
OAuth is for constrained delegation to apps

Authorization
server

Resource
server

Resource
owner

Client

Authorizes (consents) at run
time after authenticating, at
the AS

Standard OAuth endpoints for
authorization and access token
issuance

Some number of API
endpoints that deliver the
data or other value-add

App gets consent based on the
API scopes it requested; it has
its own identity distinct from the
RO’s

It has helped to kill the “password anti-pattern”
OAuth is for constrained delegation to apps

Authorization
server

Resource
server

Resource
owner

Client

Authorizes (consents) at run
time after authenticating, at
the AS

Standard OAuth endpoints for
authorization and access token
issuance

Some number of API
endpoints that deliver the
data or other value-add

App gets consent based on the
API scopes it requested; it has
its own identity distinct from the
RO’s

(A)
Authorization

Request
(B)

Authorization
Grant

(C)
Authorization

Grant

(D)
Access
Token

(E)
Access Token

(F)
Protected
Resource

It has helped to kill the “password anti-pattern”
OAuth is for constrained delegation to apps

Authorization
server

Resource
server

Resource
owner

Client

Authorizes (consents) at run
time after authenticating, at
the AS

Standard OAuth endpoints for
authorization and access token
issuance

Some number of API
endpoints that deliver the
data or other value-add

App gets consent based on the
API scopes it requested; it has
its own identity distinct from the
RO’s

(A)
Authorization

Request
(B)

Authorization
Grant

(C)
Authorization

Grant

(D)
Access
Token

(E)
Access Token

(F)
Protected
Resource

This can come with a refresh
token for renewal without the
RO’s intervention

It has helped to kill the “password anti-pattern”
OAuth is for constrained delegation to apps

Authorization
server

Resource
server

Resource
owner

Client

Authorizes (consents) at run
time after authenticating, at
the AS

Standard OAuth endpoints for
authorization and access token
issuance

Some number of API
endpoints that deliver the
data or other value-add

App gets consent based on the
API scopes it requested; it has
its own identity distinct from the
RO’s

(A)
Authorization

Request
(B)

Authorization
Grant

(C)
Authorization

Grant

(D)
Access
Token

(E)
Access Token

(F)
Protected
Resource

This can come with a refresh
token for renewal without the
RO’s intervention

The RO can revoke the
token to withdraw
authorization (consent)

It is an OAuth-protected identity API, plus a bit more
OpenID Connect does modern-day federation

Authorization
server

Resource
server

Resource
owner

Client

It is an OAuth-protected identity API, plus a bit more
OpenID Connect does modern-day federation

Authorization
server

Resource
server

Resource
owner

Client

= Federation user

It is an OAuth-protected identity API, plus a bit more
OpenID Connect does modern-day federation

Authorization
server

Resource
server

Resource
owner

Client

= Federation user

= Relying party

It is an OAuth-protected identity API, plus a bit more
OpenID Connect does modern-day federation

Authorization
server

Resource
server

Resource
owner

Client

= Federation user

= Relying party

= Identity provider
(“OpenID provider”)

It is an OAuth-protected identity API, plus a bit more
OpenID Connect does modern-day federation

Authorization
server

Resource
server

Resource
owner

Client

= Federation user

= Relying party

= Identity provider
(“OpenID provider”)

Token endpoint typically delivers an “ID
token” similar to a SAML assertion

It is an OAuth-protected identity API, plus a bit more
OpenID Connect does modern-day federation

Authorization
server

Resource
server

Resource
owner

Client

= Federation user

= Relying party

= Identity provider
(“OpenID provider”)

Standard UserInfo endpoint can be
called with an access token to look up
identity claims

Token endpoint typically delivers an “ID
token” similar to a SAML assertion

UMA brings next-gen delegation and consent to OAuth
User-Managed Access is for cross-party sharing

Resource
server

Client

Authorization
server

Resource
owner

UMA brings next-gen delegation and consent to OAuth
User-Managed Access is for cross-party sharing

Resource
server

Authorization
server

Requesting
party

Client

Resource
owner

UMA brings next-gen delegation and consent to OAuth
User-Managed Access is for cross-party sharing

Resource
server

Client

Authorization
server

Requesting
party

Resource
owner

UMA brings next-gen delegation and consent to OAuth
User-Managed Access is for cross-party sharing

Resource
server

Client

Authorization
server

Resource
server

Resource
server

Requesting
party

Resource
owner

UMA brings next-gen delegation and consent to OAuth
User-Managed Access is for cross-party sharing

Resource
server

Client

Authorization
server

Resource
server

Resource
server

Requesting
party

Resource
owner

UX Opt in

At run time

UMA brings next-gen delegation and consent to OAuth
User-Managed Access is for cross-party sharing

Resource
server

Client

Authorization
server

Resource
server

Resource
server

Requesting
party

Resource
owner

UX Opt in

At run time

Share

Ahead of time

UMA brings next-gen delegation and consent to OAuth
User-Managed Access is for cross-party sharing

Resource
server

Client

Authorization
server

Resource
server

Resource
server

Requesting
party

Resource
owner

UX Opt in

At run time

Share

Ahead of time

Approve

After the fact

UMA brings next-gen delegation and consent to OAuth
User-Managed Access is for cross-party sharing

Resource
server

Client

Authorization
server

Resource
server

Resource
server

Requesting
party

Resource
owner

UX Opt in

At run time

Share

Ahead of time

Approve

After the fact

Monitor

Anytime

UMA brings next-gen delegation and consent to OAuth
User-Managed Access is for cross-party sharing

Resource
server

Client

Authorization
server

Resource
server

Resource
server

Requesting
party

Resource
owner

UX Opt in

At run time

Share

Ahead of time

Approve

After the fact

Monitor

Anytime

Withdraw

Anytime

Key benefits of UMA to service providers

31

True security
of delegated

access

Scalability of
resource

permissioning

API-first
protection
strategy

Fosters control
for compliance

and trust

Key benefits of UMA to consumers

32

Constrained
party-to-party

delegation

Granting consent
without external

influence

Centralized
monitoring and
management

Control of
consents at
a fine grain

Questions?
Thank you!

Join us!
Eve Maler, WG chair

eve.maler@forgerock.com| @xmlgrrl
15 May 2018

http://tinyurl.com/umawg/ | @UMAWG

33

