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First: Shall we do a quick UMA 
explainer?

2



News from the last year, in context
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2015 2016 2017 2018

Mar ‘15: UMA V1.0 ratified
as Recommendations

Dec ‘15:
UMA V1.0.1

ratified as 
Recommendations

Jul ‘17:
1st Public Comment/
Review period ends

Sep ‘17:
2nd Public Comment/

Review period ends

Jan ‘18: Final
Recom-

mendations
published

Specs refactored,
over 100 issues closed,
lots of implementation

input received, Disposition
of Comments doc written…

Jan ‘18:
UMA2

logo
Feb ‘18:
Charter
update

Jan ‘18: Draft
UMA Business
Model Report

published

May ‘18:
Keycloak

joins UMA2
vendors

Gluu and
ForgeRock



Some use cases/ecosystems involving UMA

• Financial
• UK Pensions Dashboard Project / OIX / Origo
• Examining suitability for a set of Open Banking use 

cases
• IoT
• “ACE actors” architecture identifies requirements for 

authorization to an RqP
• Healthcare
• Profiled in Health Relationship Trust (HEART) at 

OpenID Foundation
• Part of the new OpenMedReady framework, along 

with HEART
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The new UMA business model defines how the UMA 
protocol enables a license-based model for controlling 
access rights to personal digital assets
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Maps legal party roles to 

technical entity roles

Use licenses and 

contracts as legal devices

Extends the “ends” to model 

many business relationships



On the docket for (the rest of) 2018

• Complete the business model and capture business scenarios
• Perform a business model POC
• Consider submitted UMA2 extensions
• Maintain UMA2 as required
• Promote UMA2 interoperability
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OAuth, OIDC, and UMA2: 
breaking it down
Find links to UMA2 specs and swimlanes at http://tinyurl.com/umawg/
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It is an OAuth-protected identity API, plus a bit more
OpenID Connect does modern-day federation

Authorization
server

Resource 
server

Resource 
owner

Client

= Federation user

= Relying party

= Identity provider
(“OpenID provider”)

Standard UserInfo endpoint can be 
called with an access token to look up 
identity claims

Token endpoint typically delivers an “ID 
token” similar to a SAML assertion
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Key benefits of UMA to service providers

31

True security
of delegated 

access

Scalability of 
resource 

permissioning

API-first 
protection 
strategy

Fosters control 
for compliance 

and trust



Key benefits of UMA to consumers
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Constrained 
party-to-party 

delegation

Granting consent 
without external 

influence

Centralized 
monitoring and 
management

Control of 
consents at
a fine grain



Questions?
Thank you!

Join us!
Eve Maler, WG chair

eve.maler@forgerock.com| @xmlgrrl
15 May 2018

http://tinyurl.com/umawg/ | @UMAWG
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