
User-Managed Access (UMA)
in the ACE Context

Eve Maler, chair
@UMAWG | @xmlgrrl

13 January 2015
tinyurl.com/umawg

1

Agenda

•  UMA’s design center, progress, and status
•  A quick “UMA 101” primer
•  Measuring UMA against ACE use cases
•  Discussion and next steps

2

OpenID
Connect UMA

OAuth 2.0

The “new Venn” of web access control and consent

The marvelous spiral of controlled
personal data/access sharing

4

Interoperable, RESTful
authorization-as-a-service

5

Has standardized APIs
for privacy and
“selective sharing”

Outsources protection to
a centralizable
authorization server

“authz	

provider”	

(AzP)	

“authz	

relying	

party”	

(AzRP)	

iden9ty	

provider	

(IdP)	

SSO	
 relying	

party	

(RP)	

Use-case domains
Health
Financial
Education
Personal
Government
Media
Behavioral
Enterprise

Web

Mobile

API

IoT

Web/API identity and security
specification progress in context

7

Protect	

Serve	
 UMA	
 Core,	
 Resource	
 Set	
 Registra9on	

OAuth	
 1.0,	
 1.0a	
 WRAP	

OpenID	
 AB/Connect	

Open	

ID	
 OpenID	
 Connect	

OAuth	
 2.0	

‘08
 ‘09
 ‘10
 ‘11
 ‘13
‘12
 ‘14
 ‘15

Dynamic	
 Client	
 Reg,	
 Token	

Introspec9on…	

Binding	

Obs…	

5	
 Jan	
 ‘15:	
 45-­‐day	
 public	

review	
 of	
 “V1.0	

candidate”	
 specs	
 begun:	

9nyurl.com/umacore	
 &	

oauthrsr	

Interop	
 test	
 suite	

development	

under	
 way	

Other major news items
•  EIC award in

Munich

•  HEART WG at

OpenID
Foundation

•  New open-source
community:
OpenUMA at
ForgeRock.org

8

Agenda

•  UMA’s design center, progress, and status
•  A quick “UMA 101” primer
•  Measuring UMA against ACE use cases
•  Discussion and next steps

9

OAuth architecture

10

OAuth experience

11

Under the hood, UMA is “OAuth++”

Loosely coupled to enable
an AS to onboard multiple
RS’s, residing in any security
domains

This concept is new, to enable
asynchronous party-to-party
sharing driven by RO policy vs.
run-time consent

The RS
exposes
whatever
value-add API
it wants,
protected by
an AS

The RPT is the main
“access token” and (by
default – it’s profilable)
is associated with
time-limited, scoped
permissions

App-specific API

U
M

A
-enabled

client

RPT

requesting party
token

The AS
exposes an

UMA-
standardized

protection
API to the RS

The PAT protects the
API and binds the RO,

RS, and AS

P
rotection A

P
I P

ro
te

ct
io

n
cl

ie
nt

PAT

protection API token

•  Resource registration endpoint
•  Permission registration endpoint
•  Token introspection endpoint

The AS
exposes an
UMA-
standardized
authorization
API to the
client

The AAT protects the
API and binds the RqP,
client, and AS

The client may be told:
“need_info”

Authorization API

Authorization client

AAT
authorization API token

•  RPT endpoint

The AS can collect requesting party claims or
otherwise elevate trust to assess policy

A “claims-aware” client can
proactively push an OpenID
Connect ID token, a SAML
assertion, a SCIM record, or
other available user data to the
AS per the access federation’s
trust framework

A “claims-unaware” client can, at
minimum, redirect the
requesting party to the AS to log
in, press an “I Agree” button, fill
in a form, follow a NASCAR for
federated login, etc.

The RO and RqP have opposite consent/
privacy relationships with the AS

17

How an individual user might experience
setting sharing preferences

18

demo!

Default burdens on apps
Resource server
•  Gets client creds from AS
•  Gets RO-specific access token

(PAT) from AS
•  Registers protected resources

at AS as required (PUT)
•  Registers permissions at AS

for unauthorized client access
attempts (POST)

•  Introspects clients’ RPTs at AS
(GET)

Client
•  Learns AS location and

endpoints
•  Gets client creds from AS
•  Gets RqP-specific access

token (AAT) from AS
•  Requests authz data from AS

(POST)
•  Pushes user claims (optional)

or redirects user to AS

19

•  All REST
•  All JSON on both request

and response sides
•  Endpoints all TLS- and

OAuth-protected

Profiling and extensibility enable
efficiencies and non-HTTP bindings
•  “Protection API extensibility profile” for AS-RS interactions
•  “Authorization API extensibility profile” for AS-client interactions
•  “Resource interface extensibility profile” for resource server-

client interactions
–  E.g., to replace HTTP/TLS with CoAP/DTLS or co-locate entities

•  RPT profiling
–  E.g., to enable disconnected token introspection or AS “hunt list”

•  JSON extensibility all over the place
–  E.g., to enable general experimentation and escape hatches

•  Claim token format profiling
–  E.g., to enable a variety of deployment-specific trust frameworks

20

Subject

or

UMA Binding Obligations
•  Distributed authorization across domains? Scary!
•  This “legal” spec enables parties operating and using

software entities (and devices) to distribute rights and
obligations fairly in access federation trust frameworks

21

Individual!
Non-

person
entity

Authorizing Party

Requesting Party

Resource Server Operator

Client Operator

Requesting Party Agent

Authorization Server
Operator

Important	
 state	

changes	
 when	
 new	

pairwise	
 obliga9ons	

tend	
 to	
 appear:	

•  Token	
 issuance	

•  Token	
 status	
 checks	

•  Permission	

registra9on	

•  Claims	
 gathering	

•  Access	
 requests	

•  Successful	
 access	

Agenda

•  UMA’s design center, progress, and status
•  A quick “UMA 101” primer
•  Measuring UMA against ACE use cases
•  Discussion and next steps

22

Strong architectural matches
þ  Owner grants different resource

access rights to different parties
•  U1.1, U2.3, U.3.2, (U3.3)

þ  Owner grants different access
rights for different resources on
a device (including read, write,
admin)
•  U1.3, U4.4, U5.2

þ  Owner not always present at
time of access
•  U1.6, U5.5

þ  Owner grants temporary access
permissions to a party
•  U1.7

þ  Owner applies verifiable
context-based conditions to
authorizations
•  U2.4, U4.5, U6.3

þ  Owner grants temporary access
permissions to a party
•  U1.7

þ  Owner preconfigures access
rights to specific data
•  U3.1, U6.3

þ  Owner adds a new device under
protection
•  U4.1

þ  Owner puts a previously owned
device under protection
•  U4.2

þ  Owner removes a device from
protection
•  U4.3

þ  Owner preconfigures access
rights to specific data
•  U3.1

þ  Owner revokes permissions
•  U4.6

þ  Owner grants access only to
authentic, authorized clients
•  U7.1, U7.2

23

Potential profiling/extension
opportunities

q Constrained device might not always be
able to reach the Internet
•  U1.9, U5.4, U6.5, U7.3
•  Or proxy/gateway approach

q Impossible or inefficient to contact all
affected devices directly when policies are
updated
•  U5.6

24

Potential user experience and
system configuration opportunities
q Spontaneous device provisioning

•  U2.1
q Spontaneous/dynamic policy changes

•  U2.2, U6.1
q Secure-by-default policies

•  U2.6, U3.6
q Easy-to-edit policies

•  U2.7, U2.9, U2.10, U3.6, U6.2

25

Apparent OOS challenges
q  Sensor data integrity

•  U1.2
q  Sensor data confidentiality

•  U1.2
q  Client-RS messages forwarded

over multiple hops?
•  U1.8, U5.7

q  Smart home devices
communicate with different
control devices
•  U2.5

q  Owner prevents eavesdroppers
on home network
•  U2.8

q  Prevent (all) DoS
•  U3.7

q  High security to prevent owner
fatalities
•  U3.8

q  Multicast protocol?
•  U4.8

q  Physical device security
•  U5.1

q  Wired and wireless
•  U7.4

q  Mitigate risk of financial damage
•  U7.5
•  UMA Binding Obligations spec

helps do this

26

Agenda

•  UMA’s design center, progress, and status
•  A quick “UMA 101” primer
•  Measuring UMA against ACE use cases
•  Discussion and next steps

27

Questions? Thank you!

Eve Maler, chair
@UMAWG | @xmlgrrl

13 January 2015
tinyurl.com/umawg

28

