
UMA for SDS
Eve Maler, Kantara UMA WG chair

tinyurl.com/umawg
1 Oct 2020

http://tinyurl.com/umawg

UMA Demo

2

UMA and Consent

Consent (and consent to contract) legally
require Manifestation, Knowledge, and
Voluntariness – more often honored in the
breach

Cookie consent
App permissions

Marketing preferences
Third-party permissions

ToS agreements

Digital consent has serious practical
challenges achieving revocability, contract
meeting of the minds, choice in relationship
building, and consent seeker good faith

3

UMA enables permissioning that is
asynchronous

Share with parties, with groups, by relationship
Respond to pending requests
Monitor all current shares across sources
Modify one or more shares
(Respond to request at run time à la consent)

It is a technology that can enable right-to-use
licensing within a Me2B framework of mutual
agency and value exchange

L. LeVasseur and E. Maler, "Beyond Consent: A Right-to-Use License for Mutual Agency," in IEEE Communications Standards Magazine, vol. 3, no. 4, pp. 52-59, December 2019, doi: 10.1109/MCOMSTD.001.1900031.

OAuth and UMA

4

resource
owner

client

authorization
server

resource
server

OAuth enables constrained
delegation of access to apps on
request

Alice can agree to app
connections and also revoke
them

“ALICE-TO-SELF” SHARING

uses

domain

OAuth and UMA

5

resource
owner

client

authorization
server

resource
server

resource
server

resource
server

requesting
party

UMA adds control of
cross-party sharing, letting
Alice be absent when Bob uses
a client to attempt access

Alice controls trust between
resource hosts and authorization
services – enabling a wide
ecosystem of resource hosts, so
Alice can manage sharing
across them

“ALICE-TO-BOB” SHARING

• UMA2 GRANT

▪ UMA2 FEDAUTHZ

uses

can be in different domains

UMA Technical
and UMA BLT

6

Key

lowercase = tech (specs)
Uppercase = Biz/Legal

 = Permissions

 = Licenses

Authorization Server
Operator

authorization server

Resource Rights
Administrator

resource owner
Requesting Agent

requesting party

Resource Server
Operator

resource server
Client Operator

client

Delegates-perm-authority-to

Delegates-mgmt-to

Licenses-perm-granting-to

Licenses-perm-getting-to

Licenses-perm-getting-to

Permits-knowing-claims

Delegates-seek-authority-to

AGENCY CONTRACT

ACCESS CONTRACT

Data
Subject

Requesting
Party

Delegates-perm-authority-to

Delegates-mgmt-to

Delegates-seek-authority-to

Legal
Person

No trust required; “negative
trust” is an option

Policy Manager extension: AS can
delegate policy handling; RO can
choose how to manage policy; RO can
aggregate management across AS’s at
one trusted place

authorization
server

authorization
server

UMA and New Work

7

resource
owner

(UMA)
client

authorization
server

resource
server

requesting
party

uses

policy
manager
(client)

uses

relationship
manager
(client)

policy API

manage API

could be the same
app/agent/wallet, including in AS

uses

resource
definitions

trusted
claims

Manage API extension (TBD): RO can
manage details of resource registration
in an interoperable way

Resource definitions (extension?
TBD): RS can register API resource and
scope templates for UMA clients to
follow, to increase interop as well as
extent of AS abilities to manage client
communities of trust

Trusted claims (TBD): AS delegates
claims collection about RqP to other
AS’s in an interoperable way, with
predictable set math

P*P and (OAuth and) UMA

8

access
requester PEP obligations

service

PDP context handler resource

PIP

PAP subject environment

1. policy

2. access request

3. request

4. request notification

5. attribute queries

6. attribute query

7a. subject attributes

7b. resource attributes

7c. environment attributes

8. attribute

9. resource content
10. attributes

11. response context

12. response

13. obligations

• PEP “proxies” access request for requester (client) [2-3]
• Access response is yes/no answer vs. access token
potentially introspected later [12]
• Policy language is standard vs. entitlements
• Extensive policy at-rest and in-motion handling therefore
• PEP trust in PDP is implied
• There is a single enterprise “resource owner”
• Subject is the implied “requesting party”

XACML (AND SIMILAR) ASSUMPTIONS

• OAuth entitlement approach improves on cloud scale
• OAuth resource owner authorizes/denies (consents) at
run time but enterprise can use XACML for access control

XACML3

OAUTH IMPLICATIONS

• UMA AS/RS relationship is akin to PDP/PEP but trust is
explicit, in the context of the RO
• Entitlement model and resource registration transfer
more control to RS
• Explicit resource owner and requesting party roles
standardize flexible access control without standardizing
policy language
(UMA2 token endpoint errors map to XACML responses)

UMA IMPLICATIONS

Key: AS analogue authz related RS analogue resource related client analogue client related RqP analogue

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
https://kantarainitiative.org/confluence/display/uma/UMA+Implementer's+Guide#UMAImplementer'sGuide-authz-responsesUnderstandingAuthorizationServerResponseOptionsFromtheTokenEndpoint

