
Distributed Authorization���
…as conceived by UMA	

18 Oct 2012	

Eve Maler, UMA WG chair	

@UMAWG, @xmlgrrl	

1	

UMA turns online sharing with anyone
into a “privacy by design” solution	

I want to share this stuff
selectively!	

•  Among my own apps	

•  With family and friends	

•  With organizations	

I want to protect this stuff
from being seen by everyone
in the world!	

Historical	

Biographical	

Reputation	

Vocational	

Artistic/user-generated	

Social	

Location/geolocation	

Computational	

Genealogical	

Biological/health	

Legal	

...	

2	

UMA gives users a true���
digital footprint control console	

•  Web 2.0 access control���
is inconsistent and
unsophisticated	

•  To share with others, you have
to list them literally	

•  You have to keep rebuilding
your “circles” in new apps	

•  You can’t advertise content
without giving it away	

•  You can’t get a global view of
who accessed what���
	

•  You can unify access control
under one app���
	

•  Sharing policies can test for
claims like “over 18”	

•  You can reuse the same
policies with multiple sites	

•  You can control access to
stuff with public URLs	

•  You can manage and revoke
access from one place	

3	

UMA
leverages

OAuth 2.0
and OpenID

Connect	

4	

Thoughts on UMA, vis à vis XACML	

•  As RESTful, resource-oriented, and web-dev-
friendly as possible, and rooted in OAuth by design	

•  Explicitly enables a “policy self-administrator”	

•  Enables extreme loose coupling between AM and

host	

•  By default, this separation is “not-quite-PDP” and

“slightly-more-than-PEP”	

– AM is also, implicitly, a PAP and PIP	

•  Policy expression and evaluation are out of band	

– AM integration with XACML policy would be valuable!	

5	

Enterprise use cases���
are coming to the fore	

•  Use case: organizational API authorization	

–  The authorizing party is the enterprise	

–  Its agent is a policy administrator	

–  It controls what parties access what scopes at what

endpoints	

–  Akin to traditional enterprise access management, for the

“API economy”	

•  oxAuth (http://ox.gluu.org/jira/browse/OXAUTH)

already implements OAuth 2.0 and OpenID Connect	

–  Including session management	

–  The team is finding it relatively easy to add UMA support	

6	

oXAuth sequence diagram	

7	

UMA defines how to���
protect three APIs	

8	

AM presents UMA protection API to
host for registering resources, checking
token status, etc.	

Requires an OAuth protection API token
(PAT)	

AM presents UMA authorization API to
requester for requesting access,
providing claims, etc.	

Requires an OAuth authorization API
token (AAT)	

Host presents an application-specific
protected resource API to requester for
attempting access	

Requires an UMA requester permission
token (RPT)	

With a host and AM run by different
companies, responsibility matters	

9	

All host
(auditing

only)

All AM
(classic

PDP/PEP)

Host makes authz
decisions; “AM” is
just informed of
them for auditing

reasons

AM knows
everything about

all resources being
protected; host
hands over all
responsibility

Host is in charge
of resources; AM is

in charge of
protection;; work is
divided for privacy,

liability, “single
hub” reasons

Balanced
(“not quite
PDP/PEP”)

host manages resources;
AM protects them

UMA’s “Binding Obligations” spec
attempts to account for responsibility	

10	

The RPT is extensible	

11	

Token format���
on the wire	

Authorization data ���
provided by AM	

Assertion with protected
content that the host can

locally unpack	

Artifact that the host must
dereference with the AM at

run time	

Permissions (entitlements
with a validity period)	

Standardized as a MTI
UMA token profile called
“bearer”: PDP-- / PEP++	

Authorization decision
(XACML-like true PDP /

PEP)	

Work to define UMA
token profile about to get
underway	

Claims	

(done in many OAuth

deployments, proprietarily)	

Anticipate interest due to OAuth pattern	

Policies	

associated with the
requested resource	

(“sticky policy”-like)	

The authorization data associated���
with a “bearer” token	

12	

abstract; meaning is “owned” by host	
 scopes akin to OAuth’s, but with JSON metadata	

permissions expire	

Next steps for UMA	

•  Continue to revise the spec (now at rev 05*) in
response to experience and comments	

–  Including defining additional UMA token profiles	

•  Conduct interop testing through the OSIS wiki**	

•  Support implementers and deployers	

•  Facilitate open source	

•  Liaise with AXN and other actors in the broader

“trusted identities in cyberspace” ecosystem	

–  Including the XACML TC, if there’s interest?	

•  More webinars and tweet chats…	

* http://kantarainitiative.org/confluence/display/uma/UMA+1.0+Core+Protocol 	

** http://osis.idcommons.net/wiki/UMA1:UMA_Interop_1 	
 13	

Questions?���
Thank you	

tinyurl.com/umawg | tinyurl.com/umafaq | tinyurl.com/umav1���
tinyurl.com/umatrust | tinyurl.com/umaiop | tinyurl.com/umawgfb	

14	

