Using XACML Policies to Express
OAuth Scope

Hal Lockhart
Oracle
June 27, 2013



Topics

Scope Background
Requirements
Design Alternatives
XACML Overview
Proposed Approach
Benefits

Next Steps

Future Research



Scope Background

Issued as a result of Access Grant

Intended to represent what is allowed by this
Token (not actually defined by RFC 6749)

Can be Handle or Self-contained

— Handle is reference to data held by AS

— Self-contained can be interpreted by RS

| distinguish between Requested Scope and
Issued Scope



Standardized Scope Requirements

Self-contained by definition
Agreed syntax and semantics
Cover any domain

Compute Scope given identity of Resource
Owner & Client, plus requested Scope (at most)

Determine if Scope allows requested access
using info available to RS (not owner
attributes)



Current Design Approaches

 Handle - reference to info held by AS
— Tight coupling between AS & RS
— AS could become performance bottleneck
— AS required to manage info for token lifetime

* Role —small set of privilege alternatives
— RS (or AS) knows what they mean (good or bad)
— Inflexible

— Role explosion & confusion



XACML Overview

Access Control Policy language
Well defined semantics
Original syntax XML —JSON in progress

Decision Request
— Input: Attributes - Name, Value, Category

» Categories identify the entities associated with request,
e.g. Subject, Resource, Action, Environment, etc.

* Set of Attributes values called a Situation
— Output: Effect (Permit, Deny) Obligations, Advice



Policy Evaluation Oversimplified 1

Policies contain operations on attribute values
which produce True or False

If False, policy is not applicable

If True, Effect (Permit or Deny) is noted

— (Along with Obligations and Advice)

If multiple applicable policies have different
effects, a combining rule is used

— E.g. Default Deny



Policy Evaluation Oversimplified 2

Policies form a tree
Nodes are Policy Sets, leaves are Policies

Once a branch is found not applicable, its
children are not evaluated

Policy Sets can contain Policies or Policy
References

Different policy combinations will be
applicable to different Situations



Policy Tree



Applicable Policies - Situation 1




Applicable Policies - Situation 2




Using XACML for Scope

* Scope must be able to limit
— Resources, actions, times, dates, locations, etc.
— Cover multiple situations

* Non-unique attributes (Public, confidential, Tuesday)
* Wildcards (regular expressions)
* Boolean operators (A or B or C)

— Could invent a new language
— XACML already does this



Deciding What Policies

Include all policies relevant to RS
Write program to construct polices as needed
— 1 don’ t know how to do this

Small number of preset access patterns
— Policies associated with each
— Like Roles, except actual rights are expressed

Use XACML PDP to select



Using XACML PDP

* Requested Scope can contain XACML decision
request

— |dentify typical or most strongly protected
Situation

— Or custom tweak request to particular policies

* Submit request to PDP — 3.0 feature identify
applicable policies

* Obtain policies by ID (could be cached)



Decapitated Policies

Request contains Subject Attributes of
Resource Owner

Applicable policies most likely will reference

Need to plug Subject Attribute values into
policies as constants

Optionally — optimize out null operations

Eliminate dangling policy references —
presumably from non-applicable policies



Decapitated Policy Example 1

Initial Policy

If Subject Attribute Group equals “user” and Resource
Attribute Class equals “private” permit access.

Decapitated Policy

If “user” equals “user” and Resource Attribute Class
equals “private” permit access.

Optimized Policy

If Resource Attribute Class equals “private” permit access.



Decapitated Policy Example 1

Initial Policy

If Subject Attribute Group equals “user” and Resource
Attribute Name matches Regex (“/user/”+Subject Attribute
Username+ /*”) permit access.

Decapitated Policy

If "user” equals “user” and Resource Attribute Name
matches Regex (“/user/”"+"hal”+”/*”) permit access.

Optimized Policy

If "user” equals “user” and Resource Attribute Name
matches Regex (“/user/”+"hal”+”/*”) permit access.

or

If Resource Attribute Name matches Regex (“/user/hal/*”)
permit access.



Benefits

General, flexible, domain independent

Means to select policies based on Client
request

Common expression of OAuth and non-OAuth
access control policies

Enables XACML delegation for full generality

Major revisions of access model only require
policy changes



Next Steps

Increase priority of XACML JSON policies
Need policy retrieval APl standard

Detailed specification of decapitation
algorithm

Support for just in time policies w/o
delegation profile



Future Research

Relationship to Obligations & Advice
Relationship to other Subject Categories

Use of XACML Admin/Delegation Profile with
this scheme

Use of access-permitted function with OAuth

Deeper understanding of relationship
between various access control models




Theoretical Considerations 1

Use of non-unique attribute values groups
entities into sub-groups and enables scaling

Policies are written in the most natural form

— If X, allow access
Each policy applies to many situations
— Also enables scaling

As a consequence, policies only work one way

— Determine if access allowed, can’ t enumerate
what is allowed



Theoretical Considerations 2

* Notonly can’ t go backward, can’ t go
sideways

— Can’ t compare two policies, only say if they are
both applicable to a given situation

* Proposalis a way to sidestep problem and go
from specific (request) to general (policies)
 OAuth can be looked at as a two stage policy

evaluation

1.Subject attributes for token issuance (once)
2.Remaining attributes for access (many times)



Relationship to UMA Work

* Proposal can co-exist with anonymous Subject
Attribute and Role-based scheme

e Other ideas?



