
Access	  Control	  Venn	  Infographics	  

UMA	  Work	  Group	  
16	  July	  2013	  



OpenID
Connect UMA

OAuth 2.0

Comparing	  three	  technologies	  



OpenID
Connect UMA

OAuth 2.0

Profiles as a claims-gathering option

Profiles for SSO API protection 
Pr

ofi
les

 to
 so

lve
 ac

ce
ss

 m
an

ag
em

en
t

Their	  relaConships	  



You delegate scope-
constrained access

to other apps

OAuth 2.0

Apps can get
access using a variety

of token types

You grant access to
apps operated by you

You grant
access by

consenting to
terms at run time Apps can get

access after you
go offline

You control access
to web APIs

The authorization function
is effectively local to resources

Calling app is recognized
based on authenticated

identity

OAuth	  in	  a	  nutshell	  (as	  usually	  deployed)	  



You delegate scope-
constrained access

to other apps

OpenID
Connect

You grant access to
apps operated by you

You achieve federated
single sign-on and
login-time attribute

exchange

You control access
to claims about you

You grant
access by

consenting to
terms at run time

Claims can come
from distributed sources

Apps can get
access after you

go offline

Apps get access
using bearer-style

tokens

The authorization function
is effectively local to resources

Calling app is recognized
based on authenticated

identity

OpenID	  Connect	  in	  a	  nutshell	  



You delegate scope-
constrained access

to other apps

OpenID
Connect

OAuth 2.0

Apps can get
access using a variety

of token types

You grant access to
apps operated by you

You achieve federated
single sign-on and
login-time attribute

exchange

You control access
to claims about you

You grant
access by

consenting to
terms at run time

Profiles for SSO API protection 

Claims can come
from distributed sources

Apps can get
access after you

go offline

You control access
to web APIs

Apps get access
using bearer-style

tokens

The authorization function
is effectively local to resources

Calling app is recognized
based on authenticated

identity

What	  OAuth	  and	  OpenID	  Connect	  share	  



You delegate scope-
constrained access

to other apps

UMA

Apps can get
access using a variety

of token types

You can control access to
any type of web resource

You can grant access
to apps operated by anyone

You can grant access by
setting policies and terms

ahead of time

Requesting party
is authorized

based on
claims

Claims can come
from distributed sources

Apps can get
access after you

go offline

The authorization function
is standard and

centralizable
Calling app is recognized
based on authenticated

identity

UMA	  in	  a	  nutshell	  



You delegate scope-
constrained access

to other apps

UMA

OAuth 2.0

Apps can get
access using a variety

of token types

You grant access to
apps operated by you

You can control access to
any type of web resource

You can grant access
to apps operated by anyone

You grant
access by

consenting to
terms at run time

You can grant access by
setting policies and terms

ahead of time

Requesting party
is authorized

based on
claims

Pr
ofi

les
 to

 so
lve

 ac
ce

ss
 m

an
ag

em
en

t

Claims can come
from distributed sources

Apps can get
access after you

go offline

You control access
to web APIs

The authorization function
is effectively local to resources

The authorization function
is standard and

centralizable
Calling app is recognized
based on authenticated

identity

What	  OAuth	  and	  UMA	  share	  



You delegate scope-
constrained access

to other apps

OpenID
Connect UMA

Apps can get
access using a variety

of token types

You grant access to
apps operated by you

You achieve federated
single sign-on and
login-time attribute

exchange

You control access
to claims about you

You can control access to
any type of web resource

You can grant access
to apps operated by anyone

You grant
access by

consenting to
terms at run time

You can grant access by
setting policies and terms

ahead of time

Profiles as a claims-gathering option

Requesting party
is authorized

based on
claims

Claims can come
from distributed sources

Apps can get
access after you

go offline

Apps get access
using bearer-style

tokens

The authorization function
is effectively local to resources

The authorization function
is standard and

centralizable
Calling app is recognized
based on authenticated

identity

What	  OpenID	  Connect	  and	  UMA	  share	  



OpenID
Connect UMA

OAuth 2.0

You grant access to
apps operated by you

You can grant access
to apps operated by anyone

Requesting party
is authorized

based on
claims

Calling app is recognized
based on authenticated

identity

Controlling	  access:	  by	  what/whom?	  



OpenID
Connect UMA

OAuth 2.0

You control access
to claims about you

You can control access to
any type of web resource

You control access
to web APIs

Controlling	  access:	  to	  what?	  



OpenID
Connect UMA

OAuth 2.0

You grant
access by

consenting to
terms at run time

You can grant access by
setting policies and terms

ahead of time

Controlling	  access:	  by	  what	  means?	  



OpenID
Connect UMA

OAuth 2.0

The authorization function
is effectively local to resources

The authorization function
is standard and

centralizable

AuthorizaCon	  funcCon:	  how	  is	  it	  coupled?	  



You delegate scope-
constrained access

to other apps

OpenID
Connect UMA

OAuth 2.0

Apps can get
access using a variety

of token types

You grant access to
apps operated by you

You achieve federated
single sign-on and
login-time attribute

exchange

You control access
to claims about you

You can control access to
any type of web resource

You can grant access
to apps operated by anyone

You grant
access by

consenting to
terms at run time

You can grant access by
setting policies and terms

ahead of time

Profiles as a claims-gathering option

Profiles for SSO API protection 

Requesting party
is authorized

based on
claims

Pr
ofi

les
 to

 so
lve

 ac
ce

ss
 m

an
ag

em
en

t

Claims can come
from distributed sources

Apps can get
access after you

go offline

You control access
to web APIs

Apps get access
using bearer-style

tokens

The authorization function
is effectively local to resources

The authorization function
is standard and

centralizable
Calling app is recognized
based on authenticated

identity

Summary	  


