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OAuth	  in	  a	  nutshell	  (as	  usually	  deployed)	  
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Controlling	  access:	  by	  what/whom?	  
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Controlling	  access:	  to	  what?	  
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Controlling	  access:	  by	  what	  means?	  
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The authorization function
is effectively local to resources

The authorization function
is standard and

centralizable

AuthorizaCon	  funcCon:	  how	  is	  it	  coupled?	  
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