
 

 

COMPUTING 
SCIENCE 

User-Managed Access to Web Resources 
 
Maciej P. Machulak, Eve L. Maler, Domenico Catalano and Aad van Moorsel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TECHNICAL REPORT SERIES 
 

No. CS-TR-1196   March, 2010 



TECHNICAL REPORT SERIES 
              
 
No. CS-TR-1196   March, 2010 
 

User-Managed Access to Web Resources 
 
M.P. Machulak, E.L. Maler, D. Catalano, A. van Moorsel 
 
Abstract 
 
Web 2.0 technologies have made it possible to migrate traditional desktop 
applications to the Web, resulting in a rich and dynamic user experience and in 
expanded functionality. Individuals can create and manage their content online, and 
they are not only consumers of Web services, but also active participants in creating, 
enriching and personalizing these services. As a result, potentially large amounts of 
personal, sensitive, and valuable data is put online, spread across various Web 
services. Users willingly share this data with other users and services on the Web, but 
are also concerned about maintaining privacy and keeping their personal data secure.   
Currently, users must use diverse access control solutions available for each Web 
service to secure data and control its dissemination. When such mechanisms are used 
on a daily basis, they add considerable overhead, especially since these mechanisms 
often lack sophistication with respect to functionality as well as user interfaces. To 
alleviate this problem, we discuss in this paper a novel approach to access 
management for Web resources that includes a user as a core part of its model. The 
proposal puts the user in charge of assigning access authorization to resources that 
may be hosted at various Web applications. It facilitates the ability of users to share 
data more selectively using a centralized authorization manager which makes access 
decisions based on user instructions. It also supports requesters in accessing such 
data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2010 University of Newcastle upon Tyne. 
Printed and published by the University of Newcastle upon Tyne, 
Computing Science, Claremont Tower, Claremont Road, 
Newcastle upon Tyne, NE1 7RU, England. 



Bibliographical details 
 
MACHULAK, M.P., MALER, E.L., CATALANO, D., VAN MOORSEL, A. 
 
User-Managed Access to Web Resources  
[By]  M.P.  Machulak, E. L. Maler, D. Catalano, A. van Moorsel 
Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2010. 
 
(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-1196) 

 
Added entries 
 
UNIVERSITY OF NEWCASTLE UPON TYNE 
Computing Science. Technical Report Series.  CS-TR-1196 
 
Abstract 
 
Web 2.0 technologies have made it possible to migrate traditional desktop applications to the Web, resulting in a 
rich and dynamic user experience and in expanded functionality. Individuals can create and manage their content 
online, and they are not only consumers of Web services, but also active participants in creating, enriching and 
personalizing these services. As a result, potentially large amounts of personal, sensitive, and valuable data is put 
online, spread across various Web services. Users willingly share this data with other users and services on the 
Web, but are also concerned about maintaining privacy and keeping their personal data secure.  Currently, users 
must use diverse access control solutions available for each Web service to secure data and control its 
dissemination. When such mechanisms are used on a daily basis, they add considerable overhead, especially since 
these mechanisms often lack sophistication with respect to functionality as well as user interfaces. To alleviate this 
problem, we discuss in this paper a novel approach to access management for Web resources that includes a user 
as a core part of its model. The proposal puts the user in charge of assigning access authorization to resources that 
may be hosted at various Web applications. It facilitates the ability of users to share data more selectively using a 
centralized authorization manager which makes access decisions based on user instructions. It also supports 
requesters in accessing such data. 
 
About the authors 
 
Maciej Machulak received his MSc in Computing Engineering from Wroclaw University of Technology in Poland 
in 2007. During his studies he was an Erasmus Exchange Student at Newcastle University. Maciej additionally 
completed the Advanced MSc degree in "System Design for Internet Applications" (SDIA) in 2007 at Newcastle 
University and his thesis was awarded Best 2007 SDIA Thesis. This degree included an industrial placement at 
Red Hat UK Ltd. Maciej's main task at Red Hat was to develop a framework for transactional Web Services. 
Before commencing his PhD studies Maciej was also employed as an intern at Red Hat and worked on embedded 
tools for transaction monitoring for the JBoss Application Server.  Maciej Machulak is currently a PhD student 
working with Prof. Aad van Moorsel on the Trust Economics project, funded by the UK Technology Strategy 
Board (TSB). Maciej's project is concerned with building a novel authorization solution for the Web which allows 
users to flexibly adapt access control for their Web resources to their particular security requirements. Maciej is 
also involved in the User-Managed Access (UMA) Work Group where he is a Specification Editor, an 
Implementation Coordinator and a Use Case Editor. He is also a Project Manager for the JISC-funded project 
"Student-Managed Access to Online Resources" (SMART) that aims to develop a User-Managed Access 
compliant system. 
 
Eve Maler is a Distinguished Engineer in PayPal’s Identity Services group, where she drives the development of 
security and identity strategies for enabling consumer choice in permissioning of personal data sharing.  Eve was 
one of the inventors of XML; she also co-founded the SAML effort and has made major leadership, technical, and 
educational contributions to many other standards and technical communities. In recent times she has focused 
primarily on consumer trust, privacy, and empowerment issues in Web identity and permissioned data-sharing. 
She launched an open effort called User-Managed Access to explore long-term solutions in this area.  Eve is a 
sought-after public speaker, and serves as the chair of the Web Services and Identity track of the annual XML 
Summer School held at University of Oxford.  Eve co-authored Developing SGML DTDs: From Text to Model to 
Markup, a book that provided a unique methodology for information analysis and SGML schema design. Eve’s 
blog, Pushing String at xmlgrrl.com, touches on topics both technical and whimsical. 
 
Domenico Catalano is a Senior Architect in the Software Line of Business at Sun Microsystems Italy. He focuses 
on designing Identity and Access Management solutions, and he is also an evangelist for federation and Web 2.0 
identity emerging technologies. Before joining Sun in July 1999 he worked in a Security Consulting company. He 
received his BSc in Computer Science at the University of Salerno (Italy), with a thesis on Data Security and 
Cryptography. Domenico is the author or co -author of several journal articles regarding Identity Management, 
and he blogs about identity and security at blogs.sun.com/domcat.  Domenico is a leadership team member of the 
Kantara User-Managed Access (UMA) Work Group. 
 



Aad van Moorsel joined the University of Newcastle in 2004. He worked in industry from 1996 until 2003, first as 
a researcher at Bell Labs/Lucent Technologies in Murray Hill and then as a research manager at Hewlett-Packard 
Labs in Palo Alto, both in the United States.  Aad got his PhD in computer science from Universiteit Twente in 
The Netherlands (1993) and has a Masters in mathematics from Universiteit Leiden, also in The Netherlands. 
After finishing his PhD he was a postdoc at the University of Illinois at Urbana-Champaign, Illinois, USA, for two 
years.  Aad has worked in a variety of areas, from performance modelling to systems management, from web 
services to cloud computing and on issues of security and trust. In his last position in industry, he was responsible 
for HP's research in web and grid services, and worked on the software strategy of the company.  His research 
agenda aims at establishing an intelligent enterprise, with a specific focus on trust, privacy and security. The goal 
is to provide tools to improve IT decision making, if possible based on objective, quantitative methods, eventually 
fully automated. This involves mathematical modelling, algorithms and service-oriented software implementations 
The recent research is highly interdisciplinary, using ideas from social and business sciences, to gain a deeper 
understanding of issues of trust in, for instance, cloud computing. DTI, EPSRC and EU-funded collaborations are 
ongoing with Hewlett-Packard, Merrill-Lynch, Warwick, Bath, UCL, various universities throughout Europe, and 
the Business School as well as the Medical School in Newcastle. 
 
Suggested keywords 
 
WEB 2.0 
SECURITY 
PRIVACY 
ACCESS CONTROL 
AUTHORIZATION 



User-Managed Access to Web Resources

Maciej P. Machulak

Newcastle University

Newcastle upon Tyne, UK

m.p.machulak@ncl.ac.uk

Eve L. Maler

PayPal, Inc.

San Jose, CA, USA

eve.maler@paypal.com

Domenico Catalano

Sun Microsystems

Rome, Italy

domenico.catalano@sun.com

Aad van Moorsel

Newcastle University

Newcastle upon Tyne, UK

aad.vanmoorsel@ncl.ac.uk

Abstract—Web 2.0 technologies have made it possible to
migrate traditional desktop applications to the Web, resulting in a
rich and dynamic user experience and in expanded functionality.
Individuals can create and manage their content online, and they
are not only consumers of Web services, but also active partic-
ipants in creating, enriching and personalizing these services.
As a result, potentially large amounts of personal, sensitive, and
valuable data is put online, spread across various Web services.
Users willingly share this data with other users and services on
the Web, but are also concerned about maintaining privacy and
keeping their personal data secure.

Currently, users must use diverse access control solutions
available for each Web service to secure data and control its
dissemination. When such mechanisms are used on a daily
basis, they add considerable overhead, especially since these
mechanisms often lack sophistication with respect to functionality
as well as user interfaces. To alleviate this problem, we discuss
in this paper a novel approach to access management for Web
resources that includes a user as a core part of its model. The
proposal puts the user in charge of assigning access authorization
to resources that may be hosted at various Web applications.
It facilitates the ability of users to share data more selectively
using a centralized authorization manager which makes access
decisions based on user instructions. It also supports requesters
in accessing such data.

I. INTRODUCTION

Web 2.0 has become a platform supporting all kinds of

interactions, be it business processes or collaboration between

users. This has resulted in many of these interactions and their

associated data being shifted from the real to this environment

[31], [32]. It has also influenced the way people engage

with one another, collaborate, form communities, and share

information. A key trend in Web 2.0 is the inclusion of the

user as a core part of any model [18]. It is the user who creates

data and plays a role as a content publisher. It is also the user

who disseminates this data and who shares it with other users

and services on the Web.

Sharing data in the Web 2.0 environment poses various

security and privacy issues which are commonly addressed

using diverse access control solutions. Such solutions, how-

ever, often lack sophistication, simplicity and usability since

they are a side issue for typical Web 2.0 applications.

Access control mechanisms are often tightly bound to

the application and have limited flexibility in terms of their

configuration or adaptation to a particular user’s security re-

quirements [27], [30]. These mechanisms are configured using

policies that are specified in diverse and often incompatible

policy languages using various tools at every Web application.

This prevents a user from easily monitoring, changing, or stop-

ping access relationships between online services. Moreover,

a user lacks a global view of all their sharing preferences,

patterns and data recipients on the Web.

In order to benefit from the increasing number of services

accessible over the Web, a user is forced to share data

using provided access control mechanisms. As noted by the

Vendor Relationship Management (VRM) movement [5], for

example, a user may need to “hand over” information that

can be sensitive, valuable, and personal and often has to

do it in time-consuming and imprecise ways. By providing

such information to requesting Web services an individual is

paying price in both privacy and convenience. A user then has

limited ability to control access to such information once it

is submitted, and in any case must surrender it under terms

favorable only to its recipients.

Following the highly collaborative Web 2.0 paradigm, there

is a clear need for new approaches to access management

which would allow a user to play a pivotal role in their model.

Such approaches would allow a user to be in full control over

access to their data irrespective of the location of this data.

Moreover, these approaches would allow a user to apply the

necessary security and privacy controls while retaining all the

benefits of social interactions and data sharing that the Web

2.0 environment offers.

In this paper we present a new approach to access control

for Web resources based on the User-Managed Access (UMA)

protocol1. The UMA proposal provides a method for users

to control third-party application access to their protected

resources, residing on any number of host sites, through a

centralized authorization manager that makes access decisions

based on user instructions. This gives users the required

flexibility in sharing their data and supports them in their

participation in interactions and collaboration on the Web. It

also supports potential requesters with accessing a user’s data.

The remainder of the paper is organized as follows. We

provide a requirements analysis for a user-managed access

control solution in Section II. In Section III, we explain

the User-Managed Access approach to authorization for Web

resources which meets all presented requirements. We evaluate

this approach against these requirements in Section IV. We

1The protocol is being standardized by the User-Managed Access Work
Group (UMA WG). Authors Machulak, Maler, and Catalano hold leadership
positions in this work group.



discuss progress and future work in Section V. We examine

related work in Section VI and we conclude in Section VII.

II. REQUIREMENTS ANALYSIS

New approaches to access control for Web resources should

allow the user to quickly determine what information is shared

with what parties and for what purposes [17], and further, to

control how information is shared. The user should be capable

of determining the trustworthiness of these parties, how the

shared information will be handled, and what the consequences

of sharing this information are. These properties, however, ap-

pear not to be fully covered in existing authorization solutions.

Therefore, there is a need to formulate sound and concise

requirements for a novel access management solution that

would fit precisely into the Web 2.0 environment. These re-

quirements have been initially presented in [41]. They address

the shortcomings of existing access management systems, such

as those based on XACML [8], that we perceive as either

inflexible or insufficiently user-managed. These systems seem

to lack the sophistication, simplicity and usability required to

respond to security and privacy challenges in the highly user-

driven Web environment.

We discuss each of the formulated requirements in more

detail:

1) Access relationship service: A successful user-managed

access control solution should support the notion of a distinct

online service for managing data-sharing and service-access

relationships between an individual and their online services

that request such access.

2) User-driven policies and terms: The solution should

allow an individual to select policies and enforceable contract

terms that govern access, as well as data storage, further usage,

and further sharing on the part of requesting services.

3) User-managed access relationships: It should allow an

individual to conduct short-term and long-term management

of access relationships, including modifying of the conditions

of access or terminating the relationship entirely.

4) Auditing: It should be possible for an individual to audit

and monitor various aspects of access relationships for the

purpose of data sharing analytics.

5) Requester-Host direct access: The access control solu-

tion should allow requesting services to interact directly with

hosting services in a fashion guided by policy without the user

being involved in these interactions. Real-time user approval

should be reserved for extraordinary circumstances.

6) Multiple hosting services: Requesting services should be

able to interact with multiple data hosting services associated

with the same individual.

7) Entity separation: A user should be able to store re-

sources at a host in one Web domain and protect these

resources with an access relationship service residing in a

different domain. Correspondingly, the requester could reside

in a different domain as well.

8) Resource orientation: User data access and service ac-

cess should be enabled through accessing Web resources that

have URLs.

Fig. 1. Interactions between entities involved in the User-Managed Access
(UMA) protocol.

9) Representation agnostic access control: The access re-

lationship service should not be required to understand the

representations of resources it is charged with protecting. As

such, the functionality of this service should be applicable to

arbitrary resources on the Web.

10) Preservation of user’s privacy: For resources at hosting

service X and resources at hosting service Y, neither X nor Y

should be able to find out, through their relationship with the

access relationship service, that the same individual uses the

other service.

In the next section, we discuss a new access control solution

for Web resources that meets all formulated requirements.

III. APPROACH

User-Managed Access (UMA) to Web resources is a novel

access management solution based on a new access control

delegation protocol. This protocol provides a method for users

to control third-party application access to their protected

resources, residing on any number of host sites, through a

centralized authorization manager that makes access decisions

based on user instructions. The protocol is designed to satisfy

requirements presented in Section II and formulated in [41].

A high-level view of entities involved in UMA is depicted in

Fig. 1.

The UMA proposal consists of a dedicated service for au-

thorizing data sharing and service access. The user is capable

of imposing demands on any Web application that wishes to

access a user’s data. Moreover, the user is able to monitor,

change, and stop access relationships between online services

from one location. With a specialized component being in

charge of relationships, the user does not have to manually

provide data to requesting services. Instead, the user may

provide authoritative sources from which Web services can

request such data directly in a secure and efficient way.



The UMA protocol has been researched by the User-

Managed Access Work Group (UMA WG) [42]. It has been

initially proposed in [22] and defined in [21] but has since

undergone significant modifications regarding the adoption

of the OAuth Web Resource Authorization Profiles (WRAP)

[14]. We discuss how WRAP fits into our model throughout

the paper. Additionally, we show WRAP-based interactions

between entities of the UMA architecture in Fig. 2.

A. Architecture

As shown in Fig. 1, User-Managed Access is based on four

main entities: Authorizing User, Authorization Manager, Host,

and Requester. We provide a brief overview of each of these

entities in subsequent sections. For a more detailed explanation

of these terms we refer the reader to [40] and [6].

1) Authorizing User: An Authorizing User delegates access

control from their chosen set of Hosts to an Authorization

Manager. Such a user is also responsible for configuring an

Authorization Manager with policies that control how this

component makes access decisions when a Requester attempts

to access a Protected Resource at a Host, thus serving as their

own policy administrator.

2) Authorization Manager: An Authorization Manager

(AM) acts on behalf of an Authorizing User. It evaluates access

requests made by a Requester against applicable policies,

issuing Access Tokens necessary to make authorized access

requests to Protected Resources at a Host. An Authorization

Manager may also evaluate such tokens in case a Host chooses

not to evaluate them locally. Therefore, an AM acts as a

Policy Administration Point (PAP) and a Policy Decision Point

(PDP), as defined in [43], and plays the conceptual role of a

Security Token Service as defined in [19].

3) Host: A Host is a Web application that is used by an

Authorizing User to store and manage Protected Resources

and to share these resources with specific Requesters. A

Host delegates access control to an Authorization Manager

following configuration by an Authorizing User. A Host is then

concerned with enforcing access control decisions issued by

an Authorization Manager. Therefore, a host acts as a Policy

Enforcement Point (PEP).

4) Requester: A Requester is an application that interacts

with a Host in order to get access to a Protected Resource,

which can be accomplished after it interacts with an AM

to obtain an Access Token. A Requester is controlled by a

Requesting Party that can be a person or a company that uses

such an application to seek protected resource access on their

own behalf.

For example, a Web user (Authorizing User) can arrange to

authorize an online service to gain one-time or ongoing access

to a set of personal data including his home address stored at

a personal data service (Host). A user can achieve that by

instructing the host to check with his authorization decision-

making service (Authorization Manager). The requesting party

might be an e-commerce company whose site is acting on

behalf of the user himself to assist him in arranging for

shipping a purchased item, or it might be his friend who is

using an online address book service to collect addresses, or

it might be a survey company that uses an online service to

compile population demographics. We discuss an extensive set

of use cases with various settings of the proposed entities of

the UMA solution in [7].

B. Delegation Protocol

The User-Managed Access protocol describes interactions

between all of the previously defined entities. It consists of

the following steps, which are currently defined as extensions

and profiles of the WRAP protocol [14] while the OAuth V2.0

protocol [4] is under development: (1) User registers host at

AM, (2) Requester gets access token from AM, (3) Requester

wields access token at host to gain access (Fig. 2). For the

sake of completeness, we also describe how a user may define

access control policies at AM for resources stored at a host.

The protocol, however, does not impose any constraints on

how this step should be performed.

1) User registers host at AM: In this step a user estab-

lishes a trust relationship between a host and an authorization

manager (Fig. 3). This can be achieved by providing the

location of a user’s preferred AM to a host. For example, an

authorizing user may provide the URL of their AM to a host

Web application by typing it into a text field on a Web page

or transmitting through an information card.

When a host is provisioned with the location of the AM

then it uses the host-meta discovery mechanism [11] to obtain

a metadata document from the AM. Such a document defines

the location of a user authorization URL, an access token

URL, and a token validation URL. It also defines access token

formats and claim formats that this AM generates. We refer

the reader to [6] for examples of such a metadata document.

The user authorization URL is used by a host to initiate

the process of acquiring authorization to use a particular AM.

The access token URL is used by a host to obtain an access

token for this AM. A host provides this URL to requesters so

they can acquire access tokens necessary to access protected

resources on this host. The token validation URL can be used

by the host to validate access tokens received from requesters.

When a host receives the metadata document from the

AM, it then uses one of the user delegation profiles (e.g.

Web App Profile), as defined in the WRAP specification [14],

to obtain the user’s authorization to use this AM. This is

achieved by receiving an access token authorized by a user

from an authorization manager. This token allows a host to

make authorized access requests to the AM. We discuss access

tokens in more detail when describing step (2) of the UMA

protocol.

A host may delegate access control to the AM for all its

resources, for resources of a particular user or for a specific

subset of resources only. This, however, is implementation

specific and the protocol itself supports all three granularity

levels of access control delegation.

At the end of this step, a host is capable of making

authorized access requests to the AM in order to validate

access requests to protected resources issued by requesters.



Fig. 2. High-level overview of the User-Managed Access protocol.

Fig. 3. UMA Step 1: User registers Host at AM.

User defines access control policies at AM: The UMA

protocol does not impose any constraints on how access

control policies are composed by a user or how a policy is

linked with a resource. The AM may support simple access

control matrix type policies or may provide a variety of

flexible policy languages and policy engines to support policy

composition and evaluation respectively. We envisage that

support for specific policy languages and management tools

may dictate the choice of a specific AM by a user.

UMA purposely does not constrain the policy composition

process in order to support a variety of data sharing scenarios

on the Web. A user may compose policies defining subjects

and their access rights to a user’s resources. Moreover, the

UMA protocol supports the policy-driven ability of an AM

to demand claims from a requester before authorization is

granted. A policy may also require a user’s consent to be

provided in real time. Different examples of policies are

discussed in more detail in [7].

As far as linking a policy to a resource is concerned, a

user may perform this in a variety of ways. We envisage that

a host may provide a typical security-related user interface

(e.g. a “Protect” link). When a user clicks on such a link then

they are redirected to the configured authorization manager to

associate a resource with an access control policy. Similarly,

a user may decide to log in to an AM and manually link a

policy with a resource using provided management tools.

At the end of this step, a set of resources is successfully

associated with one or more access control policies defined by

a user. The AM evaluates access requests issued by a requester

against these policies.

2) Requester gets access token from AM: In order for the

requester to be able to access a protected resource on a host

the access request needs to be accompanied by an access

token. If such a token is missing in the request then a host

responds with a standard “HTTP 401 Unauthorized” response

as defined in [24]. Such response also contains information

about the location of the AM that protects this resource. We

use the “WWW-Authenticate: WRAP” header to specify the

URL of the authorization manager where an access token

can be obtained. The requester may choose not to issue

any unauthorized access requests to a host and may directly

approach the authorization manager to acquire the token if a

location of AM is known in advance to the requester.

Once the requester learns about an access token URL at

AM, it adheres to the WRAP protocol, with a few key UMA

extensions, to obtain an access token for a protected resource

at a host. UMA adopts one of the existing profiles, as defined

in [14], for this step of the protocol. If an authorizing user

acts as a requesting party then it adopts the user delegation



profile. However, if a requesting party is a different person or

a company then it uses one of the autonomous client profiles

with the added semantic that the operator of the client is

different from the authorizing user.

In both cases a requester issues a request to the access token

URL of the AM. Such a request contains information about

the method that the requester wants to execute on a protected

resource and the scope to which access should be granted.

A requester may provide information concerning multiple

methods and multiple scopes at a host. Such information is

a simple URL-encoded JSON object. We refer the reader to

[6] for an example of such an object.

The AM evaluates an access request based on the provided

information. The protocol does not define how the AM per-

forms such an evaluation. The authorization manager may,

for example, use simple rules or a more sophisticated policy

engine to evaluate access requests against applicable policies.

Once the AM decides whether the access request is valid or

not, it may respond to a requester in one of three ways. It can

respond with a successful access response, an unsuccessful

access response or a claims-required document. The first

two responses have been adopted from the WRAP protocol

and conform to those defined in [14]. The UMA protocol

introduces the third option which is used when a user policy

requires that one or more claims must be submitted by a

requester.

Firstly, if the AM has all the required information concern-

ing this particular access request then it may respond with a

successful access response (Fig. 4 a). As defined in [14], such

a response contains an access token and an optional refresh

token.

An access token is a token, generally short-lived, which is

used by a requester to gain access to a protected resource on a

host. The refresh token, on the other hand, can be a long-lived

token that can be used by a requester to subsequently reuse

already obtained authorization and to request fresh access

tokens from AM without the need of repeating the evaluation

process. The time for which both the access and the refresh

tokens are valid can be controlled by a user at AM or can be

determined solely by an AM, and is implementation specific.

Secondly, the AM may decide that a requester is definitively

not authorized to access a particular resource according to a

user’s policy and it then responds with an unsuccessful access

response (Fig. 4 b).

The third case is where a user’s policy specifies required

claims that must be conveyed from a requesting party before

an authorization is granted, such as self- or third-party-asserted

identification, or a promise to adhere to access licensing terms.

In such a case, AM responds with a claims-required response

containing a list of all required claims. Upon receiving these

claims, the AM performs the access request evaluation process

and decides whether authorization can be granted or not. It

may then respond with a successful or unsuccessful access

token response, or with another claims-required response if

more claims are needed (Fig. 4 c).

The User-Managed Access protocol does not define the

Fig. 4. UMA Step 2: Requester gets access token from AM.

format of the claims-required document and the claims them-

selves. We envisage that protocol may use already existing

claim types such as Information Cards [10] or SAML asser-

tions [20]. However, we do see potential shortcomings of these

and other claims specifications and we are currently working

on providing a more flexible way of expressing claims as

discussed further in this section.

At the end of this step, a requester is in a possession

of an access token and an optional refresh token issued an

authorization manager for a specific access type to a protected

resource on a host.

3) Requester wields access token at host to gain access:

This step is executed when a requester has acquired an access

token from an authorization manager. A requester simply

presents such a token when attempting to access a protected

resource on a host as illustrated in Fig. 5.

A host can either choose to evaluate the access token locally

or may use the AM for the evaluation process. In the first case,

it’s the host that decides whether to grant access to a resource

or not, though this must be based on the received access token.

If the token is valid then access to a resource is granted. In

case the token is invalid then a host responds with an “HTTP

401 Unauthorized” response that contains information about

the location of the AM that protects this resource (recall step

(2) of the protocol).

In case a host decides to use the AM for the validation

process, it then sends the token to the AM’s token validation

URL. This request for validation is accompanied by a host’s

own access token previously acquired in step (1) of the UMA

protocol. Additionally, a host sends information regarding the

resource on which access is being attempted and the method

of requested access. The AM may respond in two ways to a

host: the token is valid, or the token is invalid. Based on the

AM’s response, a host allows or rejects the access request.

The UMA WG is also researching a hybrid token validation

model where AM dynamically provisions a host with the



Fig. 5. UMA Step 3: Requester wields access token at host to gain access.

ability to do local token validation. Such approach would

address performance issues related to remote token validation.

After this step of the protocol, a requester gains authorized

access to a protected resource or is denied access to a resource

if the presented access token is invalid. In the latter case, a

requester is free to seek authorization or to refresh its access

token at AM using the previously acquired refresh token or

by other means specified in the chosen WRAP profile.

C. Claims

The User-Managed Access protocol does not constrain

users in composing access control policies for their protected

resources (subject to AM implementation limitations). Hence,

a user may specify policies defining required claims which

must be submitted by a requester before authorization can be

granted. These claims may refer to data storage, further usage,

and further sharing on the part of requesting services.

Submitted claims may be affirmative, representing a state-

ment of fact. An affirmative claim can be asserted by a

requesting party or another claims issuer (e.g. can be signed

by a third-party service). A statement of fact might be “The

requesting party is over 18 years of age.” A claim can be

also promissory and can be asserted by the requesting party

specifically to the authorizing user. For example, such claim

may state that “The requesting party will adhere to the specific

Creative Commons licensing terms indicated by the AM.” We

envisage that the process of demanding and submitting claims

would have legal enforceability consequences as necessary.

The User-Managed Access protocol, as previously dis-

cussed, does not depend on any specific claim type that a

requester may need to submit to an authorization manager.

The protocol can make use of already established types such

as these proposed in [23], [20], [10], [9], and [13]. However,

some of these types are too complex and therefore not well-

suited for Web 2.0-style implementations, and all these types

appear to lack the ability to specify required parameter values

in claims; thus they may be unable to satisfy complex use

cases such as these discussed in [7]. Therefore, the UMA WG

plans to define a new simple and extensible claim type that

would fit precisely into the needs of User-Managed Access.

This prototype would use JSON as its format and would allow

for parameterized claims to be defined.

IV. EVALUATION

The proposed User-Managed Access architecture and del-

egation protocol meet all of the requirements described in

Section II. Requirement (1) is satisfied by including an au-

thorization manager within our architecture and by allowing

authorizing users to delegate access control from hosts to this

specialized component.

An authorizing user can be involved in all the steps of access

control policy management such as those given in [8]. It is the

user that applies access control policies to their distributed set

of Web resources and grants authorizations to requesters of

these resources. The UMA proposal does not constrain how

a user defines access control policies. It supports the policy-

driven ability to demand “claims” which may govern access, as

well as data storage, further usage and sharing by requesters.

Moreover, the user is able to monitor, change, and stop access

relationships between their online services. Hence, the UMA

proposal meets requirements (2), (3) and (4) respectively.

A requester is able to access protected resources only when

wielding an access token issued by an authorization manager

that protects these resources. The step of obtaining such a

token does not oblige a user to be directly involved in these

interactions (unless the user chooses policies that demand their

consent in real time) and it therefore satisfies requirement

(5). Additionally, a requester is free to obtain more than one

access token to access protected resources on different hosts

associated with the same authorizing user. This property of

the UMA proposal meets requirement (6).

All of the entities of the proposed architecture can reside

in distinct Web domains. Interactions between these entities

are based on the standard HTTP protocol and conform to

the REST architectural style [25] to the extent possible.

This makes the User-Managed Access approach satisfy the

formulated requirement (7). Moreover, the described solution

is agnostic as to the identifiers used in an individual’s various

Web services making it possible to be deployed in “today’s

Web”. Additionally, it does not impose any constraints on

what resources may be protected by an authorization man-

ager. These properties of the discussed UMA solution satisfy

requirements (8) and (9) respectively.

An authorizing user may establish a trust relationship be-

tween multiple hosts and a single authorization manager. In

the presented approach, none of these hosts can recognize

that an individual has established a trust relationship between

a different host and the same AM and is therefore using a



particular service on the Web. As such, the User-Managed

Access protocol preserves the user’s privacy, which meets the

formulated requirement (10).

V. PROGRESS AND FUTURE WORK

We have described the User-Managed Access approach to

authorization for Web resources. UMA addresses shortcom-

ings that are present in other solutions to access control and

aims to solve the problems identified in an extensive set

of scenarios discussed in [7]. Moreover, it meets all of the

requirements presented in Section II.

The UMA proposal is being researched by the User-

Managed Access Work Group [42] (operating at the Kantara

Initiative under the charter at [3]). The aim of this work group

is to develop a set of draft specifications for the protocol, and

to facilitate the development of interoperable implementations

of these specifications. The described protocol has been al-

ready produced as a draft specification [6] and the end result

of the Kantara process is planned to be submitted to IETF [1].

We plan to empirically test the UMA protocol using mul-

tiple independent implementations [39]. One of the authors is

currently working on an open source prototype Java implemen-

tation under the Student-Managed Access to Online Resources

(SMART) project [36] funded by JISC [2]. The project will

develop an UMA-compliant access control solution, deploy it

within Newcastle University and evaluate the entire system

through user studies. Another UMA group participant also

plans to have an open source C# implementation of the

protocol jointly conducted by Technical University of Munich

and Fraunhofer Institute of Secured Information Technology.

The User-Managed Access group is actively collaborating

with other efforts aiming to provide new approaches to autho-

rization for Web resources such as the OAuth WG [4]. The

group is continuously gathering use cases for its protocol in

order to formulate further sound and concise requirements that

the protocol must satisfy. The group also works on specifying

design principles that the protocol should meet.

VI. RELATED WORK

Access control systems for the Web have been researched

extensively and aim to address mostly flexibility [16] or us-

ability [15] challenges. These systems, however, do not appear

to be well-suited to the increasingly user-driven Web 2.0 envi-

ronment with an ever-growing number of resources. Recently

proposed solutions aim to fit into such an environment by

empowering users with more control over access rights to

their data. More notable works include those discussed in [28],

[37], [38], [26], [35] and [34]. In this section we provide

an overview of related work that has either influenced or

contributed to the User-Managed Access proposal.

OAuth [12] is one of the early proposals to address autho-

rization between Web services that attracted much attention

in the Web community. It allows a Resource Owner to share

data between two Web applications, one being a Server and

the other being a Client. Access to data is authorized by a

Resource Owner at the Server side which results in an access

token being issued to a Client. As a result, a Client does not

learn credentials of a Resource Owner and is able to make

authorized access requests to resources at a Server using this

acquired token.

With tokens being used for accessing protected resources,

OAuth addresses the password anti-pattern [33], i.e. a user

does not have to reveal their credentials to give one service

access to protected resources hosted at a different service. Each

OAuth service provider, however, must independently serve an

authorization management function without the possibility of

centralized management, defeating requirement (1) as defined

in Section II. Therefore, this specification is unable to address

data sharing scenarios presented in [7].

The OAuth Web Resource Authorization Profiles (WRAP)

[14] is a less complex attempt to solve the problem of autho-

rization for Web resources that has been recently submitted to

OAuth V2.0 work in IETF. WRAP allows a Web application,

called a Protected Resource, to delegate authorization to a

trusted authority called an Authorization Server. A Client,

when seeking access to a Protected Resource, must first obtain

an access token from an Authorization Server and present

this token along with an access request. However, WRAP

leaves unspecified how a Protected Resource comes to trust

an Authorization Server, and does not allow for demanding

claims from Clients. This defeats requirements (3) and (2)

respectively that are discussed in Section II.

The User-Managed Access protocol currently relies on

the WRAP protocol for its interactions between entities of

the proposed architecture. It builds on two instances of this

protocol to meet formulated requirements [41] and to satisfy

investigated scenarios of sharing information on the Web [7].

We show how WRAP fits into the UMA model for access

management for Web resources in Fig. 2.

A similar approach to User-Managed Access is discussed

in [30]. The proposed system, called User-Managed Access

Control (UMAC), has been initially described in [29] and

consists of an architecture of services and an access control

protocol defining interactions between these services. A user

may delegate access control from their set of Web applications

to a specialized component and apply security requirements to

all of their Web resources using this component.

The described architecture and protocol are closely re-

lated to the User-Managed Access solution and have been

researched virtually in parallel with our work. The authors of

UMAC have adopted the terminology proposed by the UMA

WG for their architecture. The discussed protocol, however, is

based on redirections where a host can refer a requester to the

authorization component without any discovery mechanisms.

It also uses remote token validation which has been only re-

cently adopted by UMA in favour of polling the authorization

state of a requester from AM. A more detailed analysis of

both UMA and UMAC solutions is presented in [30].

VII. CONCLUSIONS

We have investigated the need for new approaches to access

management for Web resources that would include a user as



a core part of their model. Additionally, we have discussed

the requirements for such approaches. We have presented the

User-Managed Access solution and described its architecture

and access control delegation protocol. We have then evaluated

the UMA solution to show that it satisfies all discussed

requirements.

The UMA approach provides a method for users to control

third-party application access to their protected resources,

residing on any number of host sites and to introduce those

hosts dynamically to a user-chosen authorization manager

that makes access decisions based on user instructions. UMA

aims to allow users to flexibly apply the necessary security

and privacy controls while retaining all the benefits of social

interactions and data sharing in the Web 2.0 environment.

ACKNOWLEDGMENTS

Authors Machulak and van Moorsel are supported by

UK Technology Strategy Board grant nr. P0007E (“Trust

Economics”) and JISC-funded project “SMART - Student-

Managed Access to Online Resources”.

The authors would like to acknowledge the work done by

other members of the UMA WG towards standardization of

the User-Managed Access protocol. In particular, the authors

are grateful to Paul C. Bryan for his work on the protocol

since its early beginning. We would also like to thank Hasan

Ibne Akram for his feedback on this paper.

REFERENCES

[1] Internet Engineering Task Force (IETF). http://www.ietf.org. Accessed
18/03/2010.

[2] Joint Information Systems Committee (JISC). http://www.jisc.ac.uk/.
Accessed 18/03/2010.

[3] Kantara Initiative. http://kantarainitiative.org/. Accessed 18/03/2010.
[4] OAuth WG. https://www.ietf.org/mailman/listinfo/oauth. Accessed

18/03/2010.
[5] Project VRM - Vendor Relationship Management. http://cyber.law.

harvard.edu/research/projectvrm. Accessed 18/03/2010.
[6] UMA 1.0 Core Protocol. http://kantarainitiative.org/confluence/display/

uma/UMA+1.0+Core+Protocol. Accessed 18/03/2010.
[7] UMA Scenarios and Use Cases. http://kantarainitiative.org/confluence/

display/uma/UMA+Scenarios+and+Use+Cases. Accessed 18/03/2010.
[8] OASIS eXtensible Access Control Markup Language (XACML). http:

//www.oasis-open.org./committees/xacml/, 2005. Version 2.0.
[9] OpenID Attribute Exchange. http://openid.net/specs/

openid-attribute-exchange-1 0.html, December 2007.
[10] Identity Metasystem Interoperability Version 1.0. http:

//www.oasis-open.org/committees/download.php/29979/identity-1.
0-spec-cd-01.pdf, November 2008. Committee Draft 01.

[11] host-meta: Web Host Metadata. http://tools.ietf.org/html/
draft-hammer-hostmeta-05, November 2009. (Work in Progress).

[12] OAuth Core 1.0 Revision A. http://oauth.net/core/1.0a/, June 2009.
[13] Simple Web Token. http://oauth-wrap-wg.googlegroups.com/web/

SWT-v0.9.5.1.pdf, November 2009. Version 0.9.5.1.
[14] OAuth WRAP - Web Resource Authorization Profiles. http://tools.ietf.

org/html/draft-hardt-oauth-01, January 2010. (Work in Progress).
[15] Dirk Balfanz. Usable access control for the world wide web. Computer

Security Applications Conference, Annual, 0:406, 2003.
[16] Lujo Bauer, Michael A. Schneider, and Edward W. Felten. A general

and flexible access-control system for the web. In Proceedings of the

11th USENIX Security Symposium, pages 93–108, Berkeley, CA, USA,
2002. USENIX Association.

[17] Ann Cavoukian. Privacy in the clouds. Identity in the Information

Society, 1:89–108, December 2008.
[18] Dion H. Duane Nickull. Web 2.0 Architectures. What entrepreneurs and

information architects need to know, volume 271. O’Reilly, 1. edition
edition, May 2009.

[19] A. Nadalin et al. WS-Trust 1.4. OASIS Standard, 2009.
[20] S. Cantor et al. Assertions and protocols for the oasis security assertion

markup language (saml) v2.0. OASIS Standard, 2005.
[21] Eve Maler. ProtectServe draft protocol flows. http://www.xmlgrrl.com/

blog/2009/04/02/protectserve-draft-protocol-flows/, March 2009. Ac-
cessed 18/03/2010.

[22] Eve Maler. To protect and to serve. http://www.xmlgrrl.com/blog/2009/
03/23/to-protect-and-to-serve/, March 2009. Accessed 18/03/2010.

[23] S. Farrell and R. Housley. An internet attribute certificate profile for
authorization. RFC 3281 (Draft Standard), June 2002.

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999. Updated by RFC 2817.

[25] Roy Thomas Fielding. Architectural Styles and the Design of Network-

based Software Architectures. PhD thesis, University of California,
IRVINE, 2000.

[26] Roxana Geambasu, Cherie Cheung, Alexander Moshchuk, Steven D.
Gribble, and Henry M. Levy. Organizing and sharing distributed
personal web-service data. In WWW ’08: Proceeding of the 17th

international conference on World Wide Web, pages 755–764, New York,
NY, USA, 2008. ACM.

[27] M. Hart, R. Johnson, and A. Stent. More content - less control: Access
control in the web 2.0. In WOSP ’08: Proceedings of the first workshop

on Online social networks, pages 43–48, New York, NY, USA, 2008.
ACM.

[28] Francis Hsu and Hao Chen. Secure File System Services for Web 2.0
Applications. In CCSW ’09: Proceedings of the 2009 ACM Workshop

on Cloud Computing Security, pages 11–18, New York, NY, USA, 2009.
ACM.

[29] M. P. Machulak and A. van Moorsel. A Novel Approach to Access Con-
trol for the Web. Technical Report CS-TR-1157, School of Computing
Science, Newcastle University, July 2009.

[30] M. P. Machulak and A. van Moorsel. Architecture and protocol for user-
controlled access management in web 2.0 applications. Technical Report
CS-TR-1191, School of Computing Science, Newcastle University,
March 2010.

[31] Tim O’Reilly. What Is Web 2.0. Design Patterns and Business Models
for the Next Generation of Software. http://oreilly.com/web2/archive/
what-is-web-20.html, September 2005. Accessed 18/03/2010.

[32] Tim OReilly and John Battelle. Web Squared: Web 2.0 Five
Years On. http://oreilly.com/web2/archive/what-is-web-20.html, Octo-
ber 2009. Accessed 18/03/2010.

[33] Ryan Paul. OAuth and OAuth WRAP: defeating the pass-
word anti-pattern. http://arstechnica.com/open-source/guides/2010/01/
oauth-and-oauth-wrap-defeating-the-password-anti-pattern.ars, January
2010. Accessed 18/03/2010.

[34] Andrew Simpson. On the need for user-defined fine-grained access
control policies for social networking applications. In SOSOC ’08:

Proceedings of the workshop on Security in Opportunistic and SOCial

networks, pages 1–8, New York, NY, USA, 2008. ACM.
[35] D. K. Smetters. Building secure mashups. In W2SP ’08: Proceedings

of the Workshop on Web 2.0 Security and Privacy, Oakland, CA, USA,
May 2008.

[36] Student-Managed Access to Online Resources (SMART) Project.
http://www.jisc.ac.uk/whatwedo/programmes/aim/smart.aspx. Accessed
18/03/2010.

[37] San-Tsai Sun, Kirstie Hawkey, and Konstantin Beznosov. Secure web
2.0 content sharing beyond walled gardens. In ACSAC ’09: Proceedings

of the 25th Annual Computer Security Applications Conference, pages
409–418. IEEE Computer Society, December 2009.

[38] Amin Tootoonchian, Kiran Kumar Gollu, Stefan Saroiu, Yashar Ganjali,
and Alec Wolman. Lockr: social access control for web 2.0. In WOSP

’08: Proceedings of the first workshop on Online social networks, pages
43–48, New York, NY, USA, 2008. ACM.

[39] UMA Implementations. http://kantarainitiative.org/confluence/display/
uma/Implementations. Accessed 18/03/2010.

[40] UMA Lexicon. http://kantarainitiative.org/confluence/display/uma/
Lexicon. Accessed 18/03/2010.

[41] UMA Requirements. http://kantarainitiative.org/confluence/display/uma/
UMA+Requirements. Accessed 18/03/2010.

[42] User-Managed Access Work Group. http://kantarainitiative.org/
confluence/display/uma. Accessed 18/03/2010.

[43] R. Yavatkar, D. Pendarakis, and R. Guerin. A framework for policy-
based admission control. RFC 2753 (Draft Standard), January 2000.


